Возможность роста нервной ткани не отрицается полностью тем фактом, что нейроны не способны к воспроизведению, как другие клетки тела. Нейроны отличаются друг от друга своими длинными волокнами, протяженностью разветвлений на теле клетки и теми амебовидными структурами на концах, названными конусами роста, которые можно наблюдать в культуре ткани и даже in situ (рис. П-2).
Рис II-2 Конус роста в действии Фрагменты фильма с замедленной съемкой. Обратите внимание на заметные изменения формы от фрагмента к фрагменту (Pomerat, 1964)
Конус роста толкает и давит на находящуюся перед ним ткань и может открывать путь, по которому он затем сможет медленно течь, удлиняя конец нервного волокна. Таким образом, рост может происходить при условии наличия свободного пространства, когда же его нет, амебовидный конец сокращается только для того, чтобы снова и снова продвигаться вперед. В центральной нервной системе рост обычно исключен потому, что элементы ткани расположены очень близко друг к другу. Правда, возникли большие сомнения в этом, так как результаты электронной микроскопии показали, что внеклеточное пространство, которое было найдено во всех частях организма, существует и вокруг нейронов.
Поэтому исследователи мозга стали наблюдать за ростом нервного волокна, создавая в мозгу свободное пространство. До недавнего времени такие попытки не приводили к значительным результатам: обычная реакция мозговой ткани на инсульт состоит в разрушении поврежденных частей и разжижении их, в образовании полости или кисты, оболочки которых препятствуют любой попытке проникновения в них. Однако современная техника дала исследователям инструмент, позволяющий избежать этой обычной реакции. Циклотрон излучает радиацию, которая резко замедляет процессы, происходящие в мягкой ткани. Таким образом, описанные разрушения можно произвести локально и только на том участке, на который направляется разрушающее воздействие. С помощью этого метода можно разрушать определенные слои коры взрослого кролика без видимого повреждения соседних. При этом методе повреждение ткани достаточно локально, так что обычно наблюдаемая реакция на большие разрушения нервной ткани не имеет места. Таким образом, создается пространство для активного роста нервных волокон (рис. И-3, П-4, П-5).
Рис П-3 Разрушение (I) в пятом слое постцентральной области коры кролика на 132-й день после воздействия пиковой дозы радиации в 48 000 рад Более тщательное исследование позволяет обнаружить многочисленные дендриты, достигающие области разрушения. Окрашено тионином (ХЗО) (Rose et al, 1961)
Рис. II-4. Область, заключенная в рамки на рис. И-3, показана при увеличении в 200 раз. Обратите внимание на апикальные дендриты входящие в область разрушения (Rose et a)., 1961).
Рис. II-5. Разрастание аксонов в области разрушения в стриарной коре крысы на 19-й день после облучения альфа частицами в 9000 рад. Окрашено по Водиану (Х390) (Kruger, 1965).
Таблица II-l
Влияние различного жизненного опыта на затылочную кору крыс о возрасте от 25 до 105 дней, содержащихся в насыщенных или обедненных стимулами условиях
Срезы, сделанные спустя несколько недель или месяцев после такого повреждения, показывают, что сохранившиеся волокна становятся толще (Kruger, 1965). Это утолщение, по-видимому, является совершенно нормальным увеличением размера волокна. Так как диаметр волокна часто является индикатором его длины, то утолщение означает в этих случаях, что мог иметь место и рост нервного волокна. Более прямым доказательством роста является появление большого числа нормальных, четко ориентированных волокон, которые не были видны ни до, пи сразу же после воздействия циклотрона (Rose, Malis, Baker, 1961). Следовательно, рост волокон возможен и в зрелом мозгу, если для этого есть благоприятные условия.
Эти эксперименты, конечно, не могут показать, является ли рост действительно результатом жизненного опыта; для этого должен быть проведен другой тип исследований. Чтобы проверить это, условия содержания крыс менялись таким образом, что одни из животных получали много стимулирующих воздействий (игра, решение задач), тогда как другие подвергались сравнительно ограниченной стимуляции. Иногда это ограничение касалось либо одной, либо другой сенсорной модальности (например, крысы содержались в полной темноте), чтобы проверить возможность различного воздействия на некоторые области мозга. Сравнение мозга животных, содержащихся в различных условиях, показало, что стимуляция вызывает заметное утолщение соответствующих отделов коры у животных, жизненный опыт которых был богаче (Krech, Rosenzweig, Bennett and Diamond, 1964).