АДАПТАЦИЯ
То, что мы воспринимаем из нашего окружения, зависит от возможностей наших рецепторных органов, которые накладывают свои ограничения на восприятие той или другой конфигурации воздействия. Так, оптическая система глаза фокусирует на сетчатку ограниченный диапазон электромагнитных волн; звуковые волны оказывают давление на жидкость в улитке уха; разного рода деформации кожи возбуждают свободные или специализированные нервные окончания в соматической системе и т. д. Эти формы энергетических изменений взаимодействуют « собственной активностью рецепторов и вызывают ее изменения, которые являются достаточно надежными, чтобы организм мог их идентифицировать как результат внешних воздействий.
Воспользуемся еще раз простой моделью протекания речевого акта, описанного в гл. I. Там участвовали две основные переменные: устойчивое состояние и дискретные переменные. Эта модель была применена к функции мозга, сейчас мы используем ее для сенсорного механизма. Заменим состояние постоянного напряжения голосовой связки постоянным распределением различных видов энергии по рецепторным поверхностям, дискретные колебания воздуха – дискретными нейронными разрядами в форме нервных импульсов. Короче говоря, предположим, что то, что происходит в органе чувств, совсем не отличается от того, что происходит в нервной системе, и что нейрофизиология сенсорных процессов может служить миниатюрной моделью ориентировочного рефлекса и процесса привыкания.
Всем известен процесс адаптации: ощущение при погружении в слишком горячую ванну и осознание спустя несколько минут, что для полного удовольствия следовало бы добавить еще теплой воды; исчезновение ощущения давления на кожу, ожидание в течение нескольких минут после входа в темный зал кинотеатра,, прежде чем мы что-либо увидим и будем способны найти свободное место. Можно привести много примеров сенсорной адаптации. Наиболее яркий из них тоже парадоксален и был получен в экспериментах, при которых проецируемый на сетчатку образ стабилизировался с помощью зеркал и линз (Ditchburn and Ginsborg, 1952; Riggs, Rattliff, Cornsweet and Comsweet, 1953).
Удивительно, что наши глаза находятся в постоянном движении – даже тогда, когда мы фиксируем точку. Эти небольшие, подобные тремору движения глаз можно зарегистрировать. Такие движения у некоторых людей настолько велики, что заметны другим, но – и в этом-то и состоит парадокс – человек с такими усиленными движениями глаз не знает о них до тех пор, пока не обратит на них внимание, когда смотрит на себя в зеркало (что обычно заставляет его обратиться к врачу, который, если он знаком с такой аномалией, успокаивает своего пациента, говоря, что это не опасно). Движения глаз препятствует тому, чтобы каждый из рецепторных элементов в течение какого-то отрезка времени возбуждался бы одним и тем же соотношением света и темноты, конечно, за исключением таких ситуаций, как плотный туман, когда свет теряет форму и функция зрения сводится к различению яркости. Чтобы изучить последствия нарушений таких движений глаз, на склере, белой части глазного яблока, не обладающей чувствительностью, укрепляют зеркало. Изображение проецируется на зеркало, отражается через призму на гладкую поверхность экрана, на которую смотрит наблюдатель. Призма корректирует отклонения рассматриваемого объекта, соответствующие отклонениям глазного яблока. Благодаря этому изображение, проецируемое на поверхность, всегда падает на одно и то же место сетчатки и образ стабилизируется (рис. Ш-3).
Стабилизированное изображение быстро становится незаметным. Зрительный прибор за несколько секунд так адаптируется, что изображение не может оставаться видимым – оно исчезает, адаптация завершена. Сходный опыт можно провести и в кожно-кинестетической системе: положите предмет на руку и некоторое время подержите его. Скоро ощущение наличия объекта исчезает.
Если бы не было такого механизма, организм подвергался бы непрерывной бомбардировке раздражителей разной длительности и интенсивности и это сделало бы его неспособным к тонкому различению. Фактически возможность зрительного различения, несмотря на изменение фонового освещения в диапазоне от 10 миллиардов до единицы, составляет одно из тех противоречий, которые вызывают большой поток исследований. В данном случае исследования адаптации сетчатки привели к открытию соответствующих нейронных механизмов. Это противоречие получило объяснение в концепции, согласно которой адаптация сетчатки целиком объясняется выцветанием и регенерацией фоточувствительного пигмента, содержащегося в рецепторах сетчатки (Hecht, 1934). Однако в последнее время стали накапливаться данные, говорящие о том, что для объяснения процесса адаптации необходимы и нефотохимические факторы я что эти факторы являются основой для осуществления фотохимических процессов (см. Rushton, в обзоре Dowling, 1967).