Р и с. Ш-5. Зарисовка нейрона в зрительной системе мозга (латеральное коленчатое тело), иллюстрирующая синаптические контакты. Обратите внимание, что, как и в сетчатке, пузырьки, содержащие химический возбудитель, находятся иногда на дальней стороне, иногда – на ближней стороне синаптической щели, показывая, что нейрон посылает сигналы и воспринимает их (обозначено направлением стрелок). Эта двойная направленность связей (диадные синапсы) делает возможной обратную связь (Ralston, 1971).
УСИЛЕНИЕ КОНТРАСТАЗатухание нейронных ответов само по себе не может объяснить, каким образом формируется «нейронная модель» памяти,, с которой сравниваются последующие воздействия. Как мы уже говорили, полученные при изучении поведения данные свидетельствуют о том, что даже при малейшем изменении сложного стимула, к которому организм обнаружил привыкание, возникает растормаживание. Необходима определенная преобразующая организация нейронных явлений. Как же осуществляется такая организация?
Чтобы ответить на этот вопрос, рассмотрим одно из тех противоречий, которыми так богата наука о мозге. В данном случае это противоречие было замечено венским физиком Эрнстом Махом. Мах отметил, что, когда человеку предъявляется более или менее неравномерно освещенная плоскость, воспринимаемые различия в яркости увеличиваются. В то время как физическое изменение, замеренное с помощью прибора, можно описать как
восприятие изменения выглядит более похожим на (см. рис. III-6).
Рис. III-6. Вращение диска с изображенными на них картами (левая колонка) формирует стимулы, физическая и субъективная характеристика которых показана в средней и правой колонках (см. «Psychology Today», 1970).
Другими словами, кажется, что плоскость имеет в местах изменения освещения темные и светлые «полосы», известные под именем «полос Маха». Можно предположить, что психофизическое несоответствие объясняется тем, что зрительный аппарат (вероятно, сетчатка) функционирует, чтобы дифференцировать, в математическом смысле, интенсивность света в соответствии с тем, как свет распределяется по ее поверхности. Согласно этому объяснению, восприятие зрительного контраста обусловлено, до-видимому, нейронным механизмом, выполняющим функцию дифференцирования. Математическая модель была улучшена и модернизирована при более детальном анализе психофизических порогов различения. Этими исследованиями были подтверждены также правомерность подхода Маха, а также некоторые элементы его решения этой проблемы. Вместе с тем они представили и нейрофизиологические данные о механизме, ответственном за зрительный контраст (а на основе экстраполяции – и за контур).
Путем вживления микроэлектрода в нервное волокно, берущее начало от ганглиозной клетки, экспериментатор может создать карту зрительного поля, – вернее, находящейся перед глазами области, – в которой преходящее появление света будет вызывать изменение в частоте импульсных разрядов этой ганглиозной клетки. Такая карта известна как зрительное рецептивное поле (см. рис. III-7).
Рис. III-7. Точечная карта сетчатки, в пределах которой световое пятно вызывает ответ определенного нейрона латерального коленчатого тела в мозгу обезьяны (Spinelli and Pribram, 1967).
Выбирая различные клетки, можно получить ряд карт: большинство карт более или менее круглые по форме, но некоторые из них звездообразные, или линейные, или имеют длинный край, отделяющий часть рецептивного поля, в котором свет вызывает этот эффект, от части, где эффект отсутствует. Вообще можно выделить два класса зрительных рецептивных полей: рецептивные поля, у которых свет в начале тормозит разряды ганглиозных клеток, и рецептивные поля, реагирующие на свет усилением спайковых разрядов нейрона. Далее, каждое из первично реагирующих полей частично или полностью окружено другой областью, освещение которой вызывает у клетки ответ с противоположным знаком. Таким образом, большинство ганглиозных клеток можно разделить на единицы с оп-эффектом или оff-эффектом в центре; ore-центральные единицы характеризуются, как правило, наличием тормозного окружения; о//-центральные единицы часто окружены зоной, реагирующей возрастанием частоты разрядов. Эти карты зрительных рецептивных полей ганглиозных клеток указывают на функциональную организацию сетчатки. Очевидно, такие записи являются не просто отражением активности отдельных рецепторов. Ганглиозные клетки – это нейроны третьего порядка, которые активируются любым большим числом рецепторов, с которыми они анатомически связаны. Рецептивные поля в большой степени соответствуют размерам фоторецепторов, и соседние поля значительно перекрывают друг друга. Таким образом, любая отдельная область рецеп-торной мозаики не связана исключительно с какой-нибудь одной особой ганглиозной клеткой (Ratliff, 1965, р. 173-174).