Итак, количественные акты полагания со всеми образующимися здесь комбинациями и отношениями, полная их бескачественность и системность ничего существенного в языке не выражают, они – те же самые, что и во всякой другой области действительности.
5. Ведущие советские математики думают не иначе. А.Н. Колмогоров пишет:
«Никакая определенная математическая схема не исчерпывает всей конкретности действительных явлений»[2].
«Математика изучает только отношения, безразличные к конкретной природе связываемых ими объектов»[3].
Отрицая возможность «универсальных» алгоритмов для достаточно общих классов даже в области математических проблем, А.Н. Колмогоров продолжает:
«Эти теоремы дали философии математики наиболее интересную и острую конкретизацию общего положения о том, что живое мышление принципиально отличается от работы любого вида вычисляющих автоматов»[4].
«Если каждый новый шаг исследования связан с привлечением к рассмотрению качественно новых сторон явления, то математический метод отступает на задний план; в этом случае диалектический анализ всей конкретности явления может быть лишь затемнен математической схематизацией»[5].
Точное приложение математики находит для себя место в небесной механике, в физике – гораздо слабее, а в биологии еще меньше. Что же касается социальных наук, то
«здесь особенно велика опасность, абстрагировав форму течения явлений, пренебречь накоплением качественно новых моментов, дающих всему процессу существенно иное направление»[6].
Итак, математические обозначения, имеющие своим предметом системы бескачественных полаганий, в языкознании ничего существенного не обозначают.
§ 2. Однородность, неподвижность и неизменность
1. Математическое обозначение имеет своим предметом те или иные системы бескачественных отношений при условии однородности, неизменности и неподвижности как самих этих отношений, так и составляющих их элементов. Углубляясь в те бескачественные отношения, которые мы сформулировали для математики, тотчас же убеждаемся, что эти отношения и составляющие их элементы обязательно однородны, где бы, когда бы и как бы мы ими ни пользовались. Взяв натуральный ряд чисел, мы без всяких доказательств видим, что единицы, входящие в каждое натуральное число, абсолютно однородны, абсолютно неизменны, постоянны и в этом смысле, можно сказать, неподвижны. Немыслимо, чтобы «расстояния» между 1 и 2, между 50 и 51, между 100 и 101 были везде разные. Это до такой степени очевидно, что не ставится даже и вопроса о разнице их «расстояния» между собою или об их малейшей изменчивости. Таблица умножения застыла перед нами раз навсегда, и ни у кого из нормально мыслящих не возникает и вопроса о возможности ее разнокачественности или изменчивости. Четыре действия арифметики и все дальнейшие правила оперирования с числами: возведение в степень, извлечение корня, логарифмирование, дифференцирование или интегрирование – возможны только как совершенно однородная и всегда неподвижная картина числовых, количественных и величинных отношений.
Это не мешает тому, чтобы в математике мыслились не только постоянные, но и переменные величины. Соотношения переменных величин нисколько не выходят за пределы чисто количественных соотношений. Они остаются однородными везде, где бы ими ни пользовались, и всегда, когда бы их ни исследовали. Малейшее изменение превращает арифметику, геометрию, математический анализ и другие дисциплины математики в ненормальное состояние.