Но, пользуясь трансформатором, ты не должен забывать о том, что мощность тока (Р = U·I), которую можно получить в цепи вторичной обмотки, никогда не превышает мощности тока первичной обмотки. Это значит, что получить от вторичной обмотки одну и ту же мощность можно, повышая напряжение и уменьшая ток, либо потребляя от нее пониженное напряжение при увеличенном токе. Следовательно, повышая напряжение мы проигрываем в значении тока, а выигрывая в значении тока, обязательно проигрываем в напряжении.
Для питания радиоаппаратуры от сети переменного тока часто используют трансформаторы с несколькими вторичными обмотками с различным числом витков. С помощью таких трансформаторов, называемых сетевыми, или трансформаторами питания, получают несколько напряжений, питающих разные цепи.
Наибольшая мощность тока, которая может быть трансформирована, зависит от размера магнитопровода трансформатора и диаметра провода, из которого выполнены обмотки. Чем больше объем магнитопровода, тем большая мощность тока может быть трансформирована. Практически же в трансформаторе всегда бесполезно теряется часть мощности. Поэтому мощность в цепи вторичной обмотки (или сумма мощностей, получаемых от всех вторичных обмоток) всегда несколько меньше мощности, потребляемой первичной обмоткой.
Но запомни: трансформаторы постоянный ток не трансформируют.
Если, однако, в первичной обмотке трансформатора течет пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение, частота которого равна частоте пульсаций тока в первичной обмотке. Это свойство трансформатора используется для индуктивной связи между разными цепями, разделения пульсирующего тока на его составляющие и ряда других целей, о которых разговор будет впереди.
Все трансформаторы со стальными магнитопроводами и магнитопроводами из железоникелевых сплавов (пермаллоя) называют низкочастотными трансформаторами, так как они пригодны только для преобразования переменного напряжения низкочастотного диапазона. На схемах низкочастотные трансформаторы обозначают буквой Т, а их обмотки римскими цифрами.
Принцип действия высокочастотных трансформаторов, предназначаемых для трансформации колебаний высокой частоты, также основан на электромагнитной индукции. Они могут быть как с сердечниками, так и без сердечников. Их обмотки (катушки) располагают на одном или разных каркасах, но обязательно близко одну к другой (рис. 57).
Рис. 57. Высокочастотные трансформаторы без сердечников (слева катушки трансформатора с общим каркасом; справа — катушки трансформатора на отдельных каркасах; в центре обозначение на схемах)
При появлении тока высокой частоты в одной из катушек вокруг нее возникает быстропеременное магнитное поле, которое индуцирует во второй катушке напряжение такой же частоты. Как и в низкочастотных трансформаторах, напряжение во вторичной катушке зависит от соотношения чисел витков в катушках.
Для усиления связи между катушками в высокочастотных трансформаторах используют сердечники в виде стержней или колец (рис. 58), представляющие собой спрессованную массу из неметаллических материалов. Их называют магнитодиэлектрическими или высокочастотными сердечниками.
Рис 58. Высокочастотные трансформаторы с магнитодиэлектрическими сердечниками (слева — со стержневым, справа с кольцевым (тороидальным) сердечником)
Наиболее распространены ферритовые сердечники С одним из таких сердечников ферритовым стержнем — ты уже имел дело во второй беседе. Ферритовый сердечник не только усиливает связь между катушками, но и повышает их индуктивность, поэтому они могут иметь меньше витков по сравнению с катушками трансформатора без сердечника.
Магнитодиэлектрический сердечник высокочастотного трансформатора независимо от его конструкции и формы обозначают на схемах так же, как магнитопровод низкочастотного трансформатора, — прямой линией между катушками, а обмотки, как и катушки индуктивности, — латинскими буквами L.
Это детали, пожалуй, наиболее многочисленны в приемниках и усилителях. В транзисторном приемнике средней сложности, например, их может быть 20–25 штук. Используют же их для ограничения тока в цепях, для создания на отдельных участках цепей падений напряжений, для разделения пульсирующего тока на его составляющие, для регулирования громкости, тембра звука и т. д.
Для резисторов сравнительно небольших сопротивлений, рассчитанных на токи в несколько десятков миллиампер, используют тонкую проволоку из никелина, нихрома и некоторых других металлических сплавов. Это проволочные резисторы. Для резисторов больших сопротивлений, рассчитанных на сравнительно небольшие токи, используют различные сплавы металлов и углерод, которые тонкими слоями наносят на изоляционные материалы. Эти резисторы называют непроволочными резисторами.
Как проволочные, так и непроволочные резисторы могут быть постоянными, т. е. с неизменными сопротивлениями, и переменными, сопротивления которых в процессе работы можно изменять от некоторых минимальных до их максимальных значений.
Основные характеристики резистора: номинальное, т. е. указанное на его корпусе сопротивление, номинальная мощность рассеяния и наибольшее возможное отклонение действительного сопротивления от номинального. Мощностью рассеяния называют ту наибольшую мощность тока, которую резистор может длительное время выдерживать и рассеивать в виде тепла без ущерба для его работы. Если, например, через резистор сопротивлением 100 Ом течет ток 0,1 А, то он рассеивает мощность 1 Вт. Если резистор не рассчитан на такую мощность, то он может быстро сгореть. Номинальная мощность рассеяния — это, по существу, характеристика электрической прочности резистора.
Наша промышленность выпускает постоянные и переменные резисторы разных конструкций и номиналов: от нескольких ом до десятков и сотен мегаом. Из постоянных наиболее распространены металлопленочные резисторы MЛT (Металлизованные Лакированные Теплостойкие). Конструкция резистора этого типа показана в несколько увеличенном виде на рис. 59, а. Его основой служит керамическая трубка, на поверхность которой нанесен слой специального сплава, образующего токопроводящую пленку толщиной 0,1 мкм. У высокоомных резисторов этот слой может иметь форму спирала. На концы стержня с токопроводящим покрытием напрессованы металлические колпачки, к которым приварены контактные выводы резистора. Сверху корпус резистора покрыт влагостойкой цветной эмалью.
Резисторы MЛT изготовляют на мощности рассеяния 2, 1, 0,5, 0,25 и 0.125 Вт. Их обозначают соответственно: MЛT-2, МЛТ-1, МЛТ-0,5, МЛТ-0,25 и МЛТ-0,125. Внешний вид этих резисторов и условные изображения мощностей рассеяния на принципиальных схемах показаны на рис. 59, б и в. Со временем ты научишься распознавать мощности рассеяния резисторов по их внешнему виду.
Рис. 59. Постоянные резисторы
Наибольшее возможное отклонение действительного сопротивления резистора от номинального выражают в процентах. Если, например, номинал резистора 100 кОм с допуском ±10 %, это значит, что его фактическое сопротивление может быть от 90 до 110 кОм. Номиналы постоянных резисторов, выпускаемых нашей промышленностью, указаны в приложении 3, помещенном в конце книги. Таблица этого приложения будет твоим справочным листком. Она подскажет тебе, резисторы каких номиналов и допусков можно искать в магазинах или у товарищей.