Здесь все было наоборот.
Пока формировался плазменный шнур, давление в нем не успевало заметно вырасти. Когда же происходило сжатие, давление в плазменном шнуре повышалось в несколько миллионов раз — не превышая, впрочем, несколько десятков атмосфер, — не забудьте, что опыт начинался при высоком разрежении газа!
Затем под действием образовавшегося давления частицы разлетались обратно. А затем газ снова сжимался. Плазменный шнур пульсировал. Стационарного процесса не получалось…
Температура в сжимающемся шнуре достигала миллиона градусов. Этот замечательный рекорд сам по себе заслуживает особого внимания.
В связи с ним возникают многие интересные вопросы: например, можно ли каким-нибудь способом определить цвет «звездного вещества» в разогретом до таких температур плазменном шнуре и не губительно ли для окружающих излучение, которое при этом возникает!
Оказывается, плазменный шнур бесцветен — он почти абсолютно прозрачен, поэтому и свечение его совсем не такое чудовищно яркое, как можно было бы ожидать. Относительно слабая яркость и кратковременность вспышки, так же как и малая плотность вещества в разрядном промежутке, делают опыт совершенно безопасным для окружающих.
Итак, одна пульсация, другая, третья…
При втором, а иногда третьем сжатии (никогда при первом!) происходит вылет нейтронов и на какую-то долю микросекунды возникает мощное рентгеновское излучение, напоминающее короткий всплеск волны. По скорости вылета и некоторым другим признакам можно отличить нейтроны не термоядерного происхождения и, невидимому, немного нейтронов термоядерного происхождения.
* * *
"РПД" решено было выкрасть. Дверь в автоматизированную квартиру Дотошкина была закрыта, но Петя Верхоглядкин произнес какие-то магические слова, акустическое peлe сработало, и дверь распахнулась. Едва Белоручкин сел в невинное с виду кресло, как оно схватило его в нерасторжимые объятия.
- Ничего, я сейчас тебя выручу, — сказал Верхоглядкин и начал нажимать подряд на все кнопки на панели управления…
(См. стр.25)
* * *
Звездное вещество, образующееся в пульсирующем шнуре, ведет себя во многих отношениях загадочно. Откуда берутся, например, рентгеновские лучи с высокой проникающей способностью! И что самое удивительное: почему, хотя напряжение на разрядной трубке составляет всего лишь 20–30 тысяч вольт, рентгеновские лучи имеют энергию в несколько сотен тысяч вольт!
Это говорит о том, что частицы в трубке могут ускоряться до энергий, гораздо больших, чем можно было ожидать, но как!
Возможные реакции синтеза изотопов водорода.
— Процессы, которыми обусловлено появление нейтронов не термоядерного происхождения и жестких рентгеновских лучей, нами еще не поняты, — заявляют исследователи.
Специально изучалось свечение плазмы. И здесь обнаружились интересные и даже необъяснимые пока что явления. Например, спектральная линия дейтерия в момент разогрева плазмы колоссально расширяется. Почему это происходит, пока что также не ясно.
Накопление таких новых необъяснимых фактов радует академика Михаила Александровича Леонтовича, который руководил теоретическими исследованиями проблемы. Это ему и его сотрудникам принадлежал тот теоретический анализ, который лежал в основе первых экспериментов лаборатории Арцимовича.
Самое интересное для физика-теоретика — это появление фактов, которые не были предсказаны и не могут быть объяснены с точки зрения сложившихся в науке представлений. Это означает, что нужно итти вперед, развивать, усовершенствовать теорию. Так и развивается настоящая наука.
ЧТО ЖЕ ДЕЛАТЬ?
Исследователи подсчитывают трофеи первого выигранного сражения за овладение термоядерными реакциями.
«Скромная победа», — может подумать читатель, который знает о том, что представляет собой подлинная наука, только понаслышке или по описаниям готовеньких завоеваний. А мы здесь познакомились с трудовыми буднями ученых мы рассказали о том, как была завоевана первая оборонительная линия крепости, казавшейся неприступной.
История, которая хранит на своих страницах память о том, как росли и развивались выдающиеся научные открытия разных времен, учит нас умению в настоящем угадывать черты будущего. Когда француз Кальете и швейцарец Пикте наблюдали первые капли жидкого воздуха, которые стекали по стеклянным сосудам холодильной машины, было очень трудно предвидеть, что пройдут десятилетия и основанные на этом открытии холодильные заводы начнут выпускать целые реки кислорода, этого могучего ускорителя металлургии и многих других процессов.
Не обращая внимания на злые порывы ветра, свистевшего а щели сарая-лаборатории, Пьер и Мария Кюри любовались голубоватым сиянием, которое испускала жалкая на первый взгляд щепотка радиевой соли, добытая ими ценой неимоверных усилий и лишений. Предчувствовали ли они в тот момент, что это было началом могучего прорыва в тайны атомного ядра!
Вряд ли. Это открылось позднее.
А мы, обогащенные опытом предшествующих поколений, знаем, что с овладения пускай крохотным плацдармом начинается генеральное наступление на самую крутую и в то же самое время самую заманчивую высоту. Ведь все-таки впервые в мире ученые смогли подступиться к таким температурам, при которых возможно осуществление термоядерной реакции. Это выдающееся событие стало праздником всей мировой науки.
В лаборатории просиял, пускай еще еле различимый, пускай на кратчайшее мгновение, но ручной, управляемый и в то же время звездный свет.
* * *
Автоматика действовала во всю. Какой-то автомат постелил постель. Другой налил воды в стакан… И вдруг кресло выбросило Белоручкина, как снаряд из катапульты, прямо на диван, на подушку с одеялом. Не успел он облегченно вздохнуть, как другая машина схватила его, завернула в одеяло и стала запихивать в нижний ящик шкафа.
«Очевидно, сюда убирается постель», — сообразил Верхоглядкин.
(См. стр. 37)
* * *
По каким направлениям развернется это наступление? Мы будем с нетерпением ждать ответа на этот вопрос, но пока что мы его не имеем.
На этих страничках я сумел показать только краешек той огромной работы, которую проделали ученые. Я не упомянул, например, о том, что в лаборатории Л. А. Арцимовича было изучено поведение в условиях сверхвысоких температур водорода, ксенона, криптона, аргона и различных смесей этих газов.
Были перепробованы десятки различных материалов для изготовления разрядных трубок. Были освоены способы сверхскоростной киносъемки, при которой за секунду получается 2 млн. кадров.
Выковалось оружие, воспитались люди, которые умеют им в совершенстве владеть, а это едва ли не главное. Этим людям предстоят еще славные дела. Лев Андреевич Арцимович прав, говоря: «Природа никогда не заботилась о том, чтобы законы, которые ею управляют, были удобны для понимания».
Могучая сила современных машин
Вообразим, что кому-то пришла в голову нелепая мысль: заменить в современных машинах механические двигатели человеческой мускульной силой.
Для этого был выбран известный французский трансатлантический лайнер теплоход «Нормандия». Ее двигатель — могучие паровые турбины; их мощность 160 тыс. л. с. Ее исполнительный механизм — гребные винты, а передаточным механизмом служат приводные валы и гигантские зубчатые колеса. Судно способно двигаться со скоростью около 55 км в час.
Могли бы люди заменить турбины и выполнить эту работу? Чтобы ответить на этот вопрос, сделаем несложные расчеты.
Подсчитаем работу турбин в килограммометрах в секунду, для этого число лошадиных сил умножим на 75. 160 000 х 75 = 12 000 000 килограммометров.
Известно, что средняя мощность человека равна 10 килограммометрам. Значит, чтобы выполнить ту же работу, что выполняют турбины «Нормандии», понадобилось бы 1 200 тыс. человек. Но это только в одну смену. Для круглосуточного движения корабля понадобилось бы 3 600 тыс. человек. Следовало бы учесть, что из такого числа людей какая-то часть может заболеть и выйти из строя. Если их будет меньше 3 %, и то это составит 100 тыс. Тогда всего придется взять на борт 3 700 тыс. человек. Предположим, что каждый вместе с багажом весит 100 кг. Тогда общий вес «двигательной» команды составит 370 тыс. т.