Сердце радиоприемника — электронная лампа. Именно благодаря ей радио достигло такого расцвета и получило столь разнообразное применение, что наш век называют веком атомной энергии и радиоэлектроники.
Электронная лампа прошла долгий путь развития. И теперь ее по праву можно отнести к наиболее совершенным приборам, которые созданы человеком.
Ежегодное производство электронных ламп достигает сотен миллионов штук, а количество различных типов их исчисляется уже тысячами. Среди столь богатого разнообразия можно выделить один тип лампы, который хотя и устроен проще многих других, но способен выполнять все главнейшие функции электронной лампы.
Таким типом является триод.
КАК РАБОТАЕТ ТРИОД
В триоде имеется всего-навсего три электрода. Подогреваемый электрическим током катод выбрасывает в окружающее пространство электроны. Эти отрицательно заряженные частицы устремляются к положительно заряженному аноду, окружающему катод. В баллоне возникает электрический ток. Ток через лампу может итти только в одном направлении. На этом свойстве основано ее применение в качестве выпрямителя и детектора. Током в лампе легко управлять при помощи третьего электрода — сетки. Сетка представляет собой спираль из тонкой проволоки, расположенную между катодом и анодом. Она играет роль «регулировщика» тока в лампе.
Положительный электрический заряд на сетке представляет своего рода попутный ветер для электронов. Они летят быстрее, притягиваясь этим зарядом, но проскакивают с разгона сквозь сетку и попадают на анод, анодный ток в лампе усиливается. При отрицательном же потенциале на сетке как бы возникает встречный ветер, электроны, отталкиваясь от сетки, замедляются, и анодный ток уменьшается.
Электроны — удивительно подвижные частицы. Все «приказания» сетки они выполняют без промедления. Если напряжение на сетке будет меняться, эти изменения тут же повторит и анодный ток, протекающий в лампе и в подключенной к ней электрической цепи (нагрузке). И не только повторит. Лампа усилит переменное напряжение, подаваемое на сетку, что очень важно. Напряжение, возникающее на нагрузке, будет в несколько раз больше подведенного.
ЭЛЕКТРОНЫ РАБОТАЮТ
Мысленно заглянем в мир электронов, работающих в лампе. Необыкновенная легкость электрона — вот та основа, на которой зиждется быстродействие электронной лампы. Масса его так мала, что наше воображение бессильно представить такую величину. Свинцовый шарик в 2,5 г во столько раз превосходит своей массой электрон, во сколько раз масса нашей планеты больше массы этого же шарика.
А размеры электрона таковы, что ученые и не мечтают пока увидеть эту крохотную частицу даже в самые сильные микроскопы. Цепочка уложенных тесно друг к другу электронов, количество которых в два раса превышает число людей на земле, растянется всего на толщину человеческого волоса!
Заряд электрона невероятно мал. Чтобы получить заряд в один кулон, требуется полдюжины порций по миллиарду миллиардов электронов в каждой! Если бы все эти электроны оказались нанизанными, как бусы, на какую-то сверхтонкую нить, то невидимое электронное ожерелье растянулось бы на 100 км.
Хотя анодный ток в лампе невелик, количество электронов, участвующих в его создании, чрезвычайно велико. Когда включается миниатюрная лампа «желудь» типа «6С1Ж», с катода к аноду устремляется лавина из фантастически огромного количества в 31.1014 электронов. Если эти электроны поровну разделить между жителями земного шара и попросить каждого сосчитать свою долю, то при безостановочном счете потребовалось бы более полугода. Но если собрать все электроны, проходящие через эту лампу за весь срок ее службы, мы получили бы массу всего в одну десятитысячную долю грамма!
САМЫМ БЫСТРОДЕЙСТВУЮЩИЙ И САМЫЙ ЧУВСТВИТЕЛЬНЫЙ ПРИБОР
Благодаря необыкновенному быстродействию электронная лампа помогла человеку овладеть чрезвычайно многообразным миром быстрых и сверхбыстрых колебаний.
При радиопередаче на волне длиной 30 м к лампе ежесекундно прибывает десять миллионов электрических колебаний. Лампа отлично справляется с этим потоком колебаний, рождающихся в антенне приемника под действием проносящихся радиоволн. Она их усиливает и преобразует в такие изменения электрического тока, которые приводят в действие громкоговоритель, и мы слышим звук, прозвучавший за несколько тысяч километров от нас.
Электронная лампа имеет дело не только с готовыми электрическими колебаниями. Она может создавать их и сама. Ламповый генератор — это один из самых гибких и удобных генераторов, известных в технике. Он дает возможность получать электрические колебания, начиная от самых медленных и до невообразимо быстрых. Эти качества радиолампы позволили ей работать и в схеме радиолокатора, выбрасывающего в пространство по нескольку тысяч радиоимпульсов в секунду, и в вычислительных машинах, позволяя вести вычисления со скоростью десяти и более тысяч математических операций в секунду, и во многих других сложнейших и точнейших устройствах современной техники.
Но электронная лампа не только открыла путь в мир быстропротекающих явлений, — она наделила человека необыкновенной чувствительностью, далеко превосходящей чувствительность наших органов чувств.
Специальные приемники импульсных сигналов уверенно работают при столь ничтожно малом потоке мощности радиоволн, который не превышает потока мощности света, доходящего в Москву от карманного фонарика, зажженного в Ленинграде! Конечно, свет этого фонарика на таком расстоянии не увидит ни один самый зоркий человек.
Таковы исключительно высокие достоинства электронной лампы, которая помогает нам слышать неслышимое и видеть невидимое, совершенствовать современную технику и открывать одну за другой тайны окружающего нас мира.
Встречный ветер, звуковой барьер, тепловая чаща….?
Инженер Б.Левитин, Рис. художн. Б. Кыштымова
Пешехода сопротивление воздуха не заботит. Речь идет, конечно, о безветренной погоде. Но уже для спринтера — бегуна на короткие дистанции — оно вырастает в ощутимую помеху. Еще сильнее мешает встречный ветер, рождаемый движением, велогонщикам и мотоциклистам.
Больше же всего, разумеется, приходится сражаться с сопротивлением воздуха авиаконструкторам.
Сопротивление воздуха по мере увеличения скорости плавно растет. Однако когда скорость самолета приближается к скорости звука (примерно 1 200 км/час), сопротивление воздуха скачком резко увеличивается. Перед самолетом вырастает «стена» сжатого воздуха, который не успевает расступаться.
Штурм «звукового барьера» — одна из самых замечательнейших и героических глав в истории авиации. Объединенными усилиями исследователей, конструкторов и летчиков-испытателей «звуковой барьер» был преодолен. Этот барьер остался позади.
И хотя за «звуковым барьером» сопротивление воздуха, как и следовало из данных лабораторных опытов и теоретических расчетов, оказалось больше, чем при подходе к этому барьеру, условия полета там гораздо благоприятнее.
Начали расти рекорды скорости, ранее «упиравшиеся» в стенку. Официальный мировой рекорд скорости, установленный недавно на английском самолете Фэйри «Дельта-2», равен 1 822 км/час. Американский самолет «Белл Х-1» на короткое время достиг скорости около 2 500 км/час, правда он взлетел не сам, а был прицеплен к самолету-матке. Эти скорости были достигнуты при полетах на больших высотах (выше 12 км).
Казалось бы, что и дальше все пойдет гладко. Однако за «звуковой стенкой» возникло новое препятствие, к которому уже приблизились современные скоростные самолеты.
ТЕПЛОВАЯ ЧАЩА
Еще в старину было замечено, что артиллерийские ядра, упав на мокрую землю, окутывались паром Когда же нагрелось ядро? При выстреле? Но было ясно, что массивное ядро не успеет сильно нагреться за короткое время пребывания в стволе.