Трюк, образно говоря, состоит в «укупоривании» светового луча в бутылку с последующим его освобождением по мере необходимости. Причем в трюке нет никакого подвоха, он явно сориентирован на практическое применение.
Дело в том, что электроны, обеспечивающие передачу сигналов в нынешних компьютерах, как носители информации далеко не идеальны. Они теряют время на взаимодействие друг с другом, они нуждаются в проводах, они передвигаются, с точки зрения завтрашних требований, черепашьим шагом.
Иное дело — световой луч. Его информационная емкость — так называемая ширина полосы пропускания сигналов — воистину колоссальна. Единственная вспышка лазерного луча — и за какую-то долю секунды может быть передано все содержание многотомной энциклопедии. Далее: световой носитель информации легко расщепляется на множество отдельных лучей, что помогает наладить параллельный процесс повсеместно признанный как будущее высокоскоростной информатики. И конечно, эти лучи наделены огромной скоростью — быстрее их, как говорят, нет ничего на всем белом свете.
Итак, свет может стать мощным средством передачи информации, но его высокая скорость имеет и обратную сторону. В каком-то смысле луч света похож на поезд без тормозов: разогнавшись, он не может вовремя остановиться, что, согласитесь, грозит крушением.
Поэтому последние годы все действия специалистов новой отрасли физики, названной оптоэлектроникой, были направлены на то, чтобы хорошенько «выдрессировать» световой луч, заставить его стартовать и останавливаться по первому же требованию, как по мановению волшебной палочки.
Определенные успехи в данном направлении уже достигнуты. Оптоэлектроника, позволяющая передавать информацию из одной точки в другую со скоростью света, ныне используется повсюду, начиная с трансконтинентальной связи и заканчивая пультом управления вашего телевизора.
Однако специалисты пока недовольны достигнутым. Для создания оптических компьютеров им необходимо еще создать световые линии задержки — устройства, в которые можно на какое-то время помещать пучки фотонов, чтобы потом снова пускать их в путь.
Чтобы оттянуть время пробега светового луча, можно направить его по многочисленным кольцам оптического волокна на сверхдлинную дистанцию. Но эти устройства, считает профессор Виксфорт, трудноконтролируемы и громоздки: скажем, для задержки света всего на одну миллионную секунды понадобится 300 метров оптоволокна. «Идеально, — говорит он, — чтобы аппаратом оптической памяти стал бы маленький контейнер, куда входящий оптический сигнал помещался бы на требуемый отрезок времени…»
И вот в Мюнхене недавно было создано устройство памяти с использованием проводников, которые по своим параметрам меньше точки на этой странице и которые можно встраивать в существующие электронные устройства.
Теоретически изготовление оптической памяти на полупроводниках не должно представлять трудности.
Энергии электронов в полупроводниках соответствуют две широкие полосы. Большая их часть находится в валентной полосе, где они привязаны к определенным атомам. Однако стоит им сообщить достаточно энергии для перемещения на полосу проводимости, как они освобождаются для движения, оставляя при этом за собой пустоты («дырки»), действующие как положительно заряженные частицы.
Так что если атаковать полупроводник фотонами соответствующей энергии, они будут поглощены и оставят за собой пары электронов и пустот, каждая из которых сможет стать своеобразным «аккумулятором» света.
Подобные устройства широко применяются в цифровых камерах, где производят перевод электрического сигнала в световой и обратно. Но конструирование оптической памяти, способной улавливать, удерживать и высвобождать свет, — задача неимоверной трудности. Главная проблемаздесь в том, как добиться разделения электронов и положительных частиц и притом сохранить. Такое разделение на расстоянии, когда они смогут воссоединиться, высвобождая фотоны соответствующей длины волны. То есть, говоря проще, по первому же требованию воссоздавая первичный световой сигнал.
Дело осложняется тем, что одни полупроводники не лучшим образом обеспечивают разделение, другие — воссоединение электронов и положительных частиц. Хотя ученые хотели бы получить оба свойства в одном полупроводнике.
Для преодоления препятствия ученые обратились к звуку. Их метод управления потоком электронов осуществляется за счет поверхностных акустических волн, распределяемых по поверхности кристалла примерно так же, как рябь распространяется по воде.