Для сборки конструкции можно использовать постоянные резисторы МЛТ-0,125 или более мощные, переменный — СП-0,4; конденсаторы типа КЛС или МБМ (СЗ) и оксидные К50-6 остальные. «Цоколевка» примененных микросхем приведена на рисунке 2.
В роли ультразвукового излучателя взят пьезоэлектрический микрофон типа УМ-1.
Времязадающая цепочка генератора на DD2 имеет переменный резистор R7, позволяющий регулировать частоту в пределах 10…50 кГц. Примененный для воспроизведения излучатель имеет собственную резонансную частоту, на которой интенсивность излучения максимальна. Наряду с основной бывают побочные резонансные частоты. Настройку генератора в резонанс с излучателем можно проводить, присоединив к резистору R8 вход осциллографа: в момент резонанса амплитуда колебаний напряжения на экране значительно возрастает. Тем не менее, наряду с резонансными частотами в процессе экспериментов следует проверить влияние на жалящую «биомассу» ряда промежуточных частот во всем рабочем диапазоне. Во время экспериментов желательно вести записи с характеристикой этих условий — места, наличия освещения, температурной обстановки, условных делений на шкале при регуляторе R7. Ну, конечно, и расстояний, на которых, возможно, будет заметно проявляться влияние излучения.
Кстати, на шкале следует отметить и обнаруженные резонансные частоты излучателя. Фиксация данных экспериментов позволит избежать ненужных «повторений пройденного», а также четко выделить зону продолжительных результатов. К таковым можно было бы отнести не только факты отпугивания насекомых, но и обратного действия — приманивания к излучателю.
Ведь неплохо, если комары и их собратья потеряют интерес к вашему лицу, рукам и набросятся на микрофон-излучатель, где их будут ждать, например, липкие ленты или пылесос.
Ю.ПРОКОПЦЕВ
Зачем нужны радиолампы?
Появившиеся лет сорок назад транзисторы так и не смогли полностью вытеснить радиолампы. Кинескоп телевизора — электровакуумный прибор, в сущности — радиолампа.
СВЧ-генераторы кухонных электроплит и мощные выходные каскады радиолокационных станций выполняются на радиолампах. Многие специалисты утверждают, что по-настоящему качественно способны усиливать звук только ламповые усилители. Поэтому стоит еще раз посмотреть повнимательнее, на что же способна радиолампа. К примеру, добавив к лампе всего три детали, используя некоторые малоизвестные схемные решения, можно создать вольтметр с огромным входным сопротивлением. Но прежде напомним о том, как работает лампа.
В вакуумированном баллоне лампы находятся электроды — катод (к), анод (а) и сетки (с); простейшая лампа — триод — располагает одной сеткой (рис. 1).
Поскольку назначение катода — испускать свободные электроны под воздействием высокой температуры нити накала (н), катод покрывают такими материалами, как барий, торий, которые при сравнительно слабом нагреве «отпускают» электроны. Те образуют вокруг катода «электронное облако», поэтому он приобретает относительно «облака» положительный заряд, удерживающий «облако» от рассеивания.
Это поясняет рисунок 2а, где радиолампа показана так, как ее изображают на принципиальных схемах. Если теперь к катоду и аноду приложить постоянное напряжение (рис. 2б) от источника G1, под действием возникшего между ними электрического поля внутри лампы потечет ток электронов, вытягиваемых из упомянутого «облака». Такая схема работает как диод.
Чтобы лампа начала работать как усилительный прибор, между катодом и управляющей сеткой нужно приложить небольшое переменное напряжение сигнала Uc. Благодаря тому, что сетка расположена ближе к катоду, нежели анод, слабое поле окажет значительное влияние на величину анодного тока, который станет пульсирующим. Выделить переменный сигнал, усиленный по току и напряжению, можно с помощью, например, трансформатора, включенного в анодную цепь лампы. Большинство радиоламп устроено сложнее рассмотренного триода — они имеют по нескольку сеток, порою два анода и даже раздельные катоды. Но не станем углубляться в теорию, а вернемся к нашему вольтметру.