Компоненты топлива — керосин и жидкий кислород — поступают в них под действием центробежной силы. Для этого перед взлетом диск с двигателями раскручивают от внешнего привода. Вращение диска в полете поддерживается благодаря тому, что каждое из сопел чуть отклонено в одну сторону. Возникающий гироскопический момент помогает кораблю устойчиво держаться на курсе.
Корпус нового аппарата почти целиком изготовлен из композитного материала на основе углеродных волокон и эпоксидных смол. Благодаря этому он получился очень легким и в то же время прочным.
После того, как экипаж выполнит полетное задание, он начинает готовиться к спуску. Для этого «Ротон» разворачивают задом наперед. Тяговые двигатели становятся теперь тормозными, и корабль постепенно начинает спускаться с орбиты по пологой спирали. Перед входом в плотные слои атмосферы экипаж раскрывает четыре складывающиеся 7-метровые вертолетные лопасти, расположенные на носу (который стал при спуске кормой). По мере того, как нарастает плотность окружающего воздуха, лопасти раскручиваются, тормозя падение аппарата. И он совершает плавный спуск в режиме авторотации (то есть лопасти вращаются свободно, без помощи двигателя).
Впрочем, в будущем Хадсон намерен увеличить длину каждой лопасти до 9,5 метра и установить на их концах небольшие реактивные двигатели. Экипаж аппарата получит возможность не только маневрировать при спуске, но взлетать по-вертолетному. И лишь на высоте около 5 километров астронавты запустят основные ракетные двигатели и поднимутся на орбиту.
В настоящее время опытный образец «Ротона» проходит всесторонние испытания. Прежде всего отрабатываются приемы мягкой посадки. С этой целью «Ротон» уже несколько раз спускался с самолета-носителя на вертолетных лопастях. Кроме того, в августе 1999 года на испытательном полигоне Мохаве, штат Калифорния, летчики включали основные двигатели, совершив 5-минутный полет на высоте около 3 метров.
К середине 2000 года компания «Ротари Рокет» планирует построить еще три «Ротона». Один из них послужит тренажером для подготовки экипажей, а два других готовят к полномасштабным полетам в космос.
Хадсон надеется, что каждый из таких аппаратов сможет совершить до 100 запусков на орбиту без капитального ремонта.
Приземление «Poтона» конструкторы видят таким..
Слов нет, «Ротон» во многом близок к идеалу. По крайней мере, теоретически. На практике же многих инженеров беспокоит проблема прочности вертолетных лопастей, которым в довершение к традиционным перегрузкам придется испытать на себе еще и тепловой удар при погружении в плотные слои атмосферы. Будут ли они служить достаточно надежно?
Ведь и на обычных вертолетах ротор является наиболее уязвимым, ненадежным элементом всей конструкции…
Кроме того, не станем забывать, близок день, когда космический корабль с космонавтами на борту отправится в полет к другим небесным телам. На Луне атмосферы практически нет, на Марсе она весьма разрежена… Так что ротор годится далеко не всюду.
Наиболее универсальным средством как старта, так и приземления на сегодняшний день остаются реактивные двигатели… Они включаются перед самым приземлением и сводят скорость движения к нулю.
Ну а в дополнение к ним хорошо бы еще добавить некое посадочное устройство типа телескопических ног или, скажем, подушки. Не удивляйтесь, идея подушки тоже заимствована у парашютистов. Некоторые асы в старые добрые времена брали с собой в полет небольшие кожаные подушечки. При спуске они подсовывали их под ремень, чтобы было удобнее сидеть на подвеске. А перед самым приземлением бросали себе под ноги, смягчая толчок приземления.
Вот и ныне инженеры приходят к мысли, что снизить скорость и мягко посадить космический корабль с помощью ракетного тормозного двигателя технически сложно. Для этого величина тяги двигателя должна плавно изменяться в широком диапазоне.
Роль буфера при посадке могут выполнять гидравлические опоры, подобные стойкам шасси современного вертолета. Именно такая система была опробована при посадке «Орла» на Луну.
Есть еще одно посадочное средство, о котором стоит рассказать подробнее. Это надувные эластичные баллоны, прикрепленные к космическому кораблю. Именно на них он и садится. Такой способ был использован при посадке американского зонда на поверхность Марса.