Выбрать главу

Кроме того, частоты гравитационных волн согласно расчетам должны находиться в звуковом диапазоне. Это обстоятельство навело экспериментаторов на идею транслировать «музыку сфер» через динамики с таким расчетом, чтобы можно было даже на слух воспринять какие-то изменения.

Карлстен Дамстон полагает, что обнаружение гравитационных волн даст ученым дополнительные сведения об окружающем нас мире. Ведь сегодняшние методы изучения Вселенной базируются на регистрации лишь электромагнитного излучения; все на свете телескопы — рентгеновские, оптические или радио — фиксируют только их. А стало быть, мы практически ничего не знаем о тех объектах Вселенной, которые не излучают электромагнитных волн. Быть может, поэтому мы до сих пор так и не можем обнаружить скрытую массу? А ведь согласно вычислениям теоретиков все звезды, галактики, скопления составляют не более 10 процентов от общей массы Вселенной.

Вот бы обнаружить остальное.

Олег СЛАВИН

НОВАЯ ЖИЗНЬ СТАРЫХ ИДЕЙ

Дирижабли завтрашнего дня

Последние лет пятьдесят о дирижабле принято писать только хорошее. Нет недостатка и в грандиозных проектах — от гигантских дирижаблей для перевозки природного газа до ракетоносцев с ядерным двигателем. Однако реально же их используют для рекламы и туризма. Американцы применяют еще несколько дирижаблей для поиска подводных лодок. Вот, пожалуй, и все. Почему?

Самый серьезный недостаток дирижабля — слишком малая скорость. Ни один дирижабль в неподвижном воздухе еще не развивал более 150 км/ч. Поэтому на малых расстояниях его легко побеждает гораздо более дешевый и компактный вертолет. А на больших…

В 30-е годы немецкий дирижабль LZ-127 «Граф Цеппелин» (рис. 1) неоднократно пересекал океан, тратя на это примерно четверо суток. Получалось втрое быстрее, чем на пароходе. Но сегодня этот путь можно проделать на самолете за 8–9 часов.

Рис. 1

Часто говорят о высокой экономичности дирижабля. Но и к этому следует относиться с осторожностью. Он действительно расходует топлива меньше, чем самолет. Но лишь благодаря полету с очень низкой скоростью. При прочих равных условиях мощность, необходимая на преодоление сопротивления воздуха, растет пропорционально кубу скорости.

Если бы мы пожелали увеличить скорость дирижабля в два раза, мощность моторов пришлось бы увеличить в восемь раз. Полеты через океан стали бы невозможны из-за возросшего расхода топлива. И наоборот, даже небольшое снижение скорости заметно повышает экономичность дирижабля.

Построенный немцами в 1917 году дирижабль LZ-104 имел, к примеру, максимальную скорость всего 104 км/ч (рис. 2).

За счет этого заметно снизился расход топлива, и воздушный корабль способен был доставлять 52 т бомб на расстояние 16 000 км!

И стоит поблагодарить судьбу за то, что немцы в годы Первой мировой войны практически не использовали возможности своих военных дирижаблей. В противном случае, если бы каждый из них хоть раз сбросил на Лондон полный груз бомб, столица Англии была бы стерта с лица земли, а прогулка LZ-104 к городам Америки помешала бы вступлению США в войну. Но вернемся к теме.

Существуют традиционные способы снижения аэродинамического сопротивления. Это улучшение формы, создание гладкой поверхности, устранение всех выступающих частей. По этому пути дирижаблестроители идут уже более ста лет и в значительной мере исчерпали его возможности. Тем более что таким способом сопротивление воздуха можно снизить не более чем вдвое. Соответственно может возрасти дальность полета, но скорость увеличится немного. На широкую дорогу это дирижабль не выведет.

Однако выход из положения есть. Нужно использовать принципиально новые методы снижения сопротивления, разработанные в наши дни для самолетов. Строго говоря, их появление связано с работами французского физика и математика Д’Аламбера (1717–1783), доказавшего, что при движении в идеальной сплошной среде, где отсутствует вязкость, сопротивление движению тел равно нулю. Это положение часто называют парадоксом Д'Аламбера.