Выбрать главу

Однако последнее не подтверждалось работами других исследователей.

Об одном из них, Л.В.Ларионове, мы сообщали на страницах журнала. Его установка отличается исключительной простотой. Она состоит из обычного бытового центробежного насоса, который перекачивает жидкость по замкнутому контуру. В этот контур введено сопло, постепенно расширяющееся. В самой узкой его части скорость жидкости возрастает, а давление падает настолько, что начинают возникать полости, наполненные паром и газом. По мере расширения сопла скорость потока жидкости уменьшается, а давление растет. Полости начинают схлопываться.

Примечательно, что кавитационное сопло известно с 1912 года, но до сих пор применялось лишь в исследовательских целях. Ларионов нашел ему множество иных применений. Прежде всего он использовал его для получения тепловой энергии. При работе на обычной водопроводной воде на каждую единицу электроэнергии, подведенной к электромотору, в контуре выделялось 1,4 единицы тепла. В опытах с солевыми растворами эта величина возрастала до двух. Радиоактивные излучения при этом обнаружены не были.

Пытаясь ответить на вопрос о возможном происхождении этой энергии, Ларионов отметил, что в обычной воде содержатся примеси, благодаря которым возможны термоядерные реакции, протекающие, однако, без радиоактивных излучений. Но не ясно, почему не идут другие реакции сопровождающиеся радиоактивным излучением. Сам ученый склонялся к мысли, что здесь мы, вероятнее всего, сталкиваемся с энергией мирового вакуума.

Как бы там ни было, но практическое применение этой энергии вполне возможно и без знания ее природы. Для этого важно добиться, чтобы прирост энергии был как можно большим. Разумно предположить, что в установке Ларионова для дела используется та часть мощности двигателя которая тратится на создание кавитационных полостей. Элементарный расчет показывает, что полезно расходовалась в лучшем случае тысячная ее часть! Все остальное тратилось на преодоление сил трения и гидродинамического сопротивления.

Первый этап снижения этих потерь будет заключаться в предельном сокращении длины контура и облагораживании его форм (рис. 4).

Эта работа на начальном этапе вполне под силу небольшой группе исследователей при весьма скромном финансировании. Перспективы ее заманчивы.

Если удастся снизить потери в 50 раз, добившись тем самым 20-кратного энергетического выхода, становится возможным отказаться от применения электродвигателя. Его заменит паросиловая установка, работающая на собственном тепле контура. Еще немного, и мы создадим универсальный двигатель, получающий энергию из мирового вакуума!

Если у вас появилось желание попробовать, посоветуем вам прочитать пару книг:

Л.Прандтль. Гидроаэромеханика. Москва, 1951.

М.А.Маргулис. Основы звукохимии. Москва, 1984.

Желаем успеха!

Пишите нам.

А.ВАРГИН

Рисунки автора

МАСТЕРСКАЯ

Не подведем Левенгука!

Современный оптический микроскоп увеличивает объект в 1500 раз и более. И содержит, кроме оптики, десятки деталей, выполненных по наивысшему классу точности. Словом, в современном понимании этот прибор сосредоточил в себе достижения физики, точной механики. И далеко не все страны способны его выпускать. Но разве не удивителен тот факт, что первые микроскопы (рис. 3) состояли всего из одной линзы и давали увеличение от 300 до 900 крат! Линзы имели форму шарика диаметром 2–2,5 мм.

Делали их в домашних условиях. В начале 60-х годов среди любителей возникло даже поветрие делать такие приборы самостоятельно. В те годы об этом немало писалось.

Давайте и мы с вами попробуем построить «микроскоп Левенгука» и посмотрим, на что он способен.

Конструкцию его поясняет рисунок 1.

Основа прибора — 2…3-миллиметровая пластинка из термопластической пластмассы. Ей придается форма равнобокой трапеции высотой 50 мм и основаниями 10 и 20 мм. У широкого основания (на рисунке — слева) сверлятся 2 отверстия с резьбой под опорные винты, а у узкого — под фокусировочный микровинт, упирающийся в предметное стекло. Последнее крепится посредством хомутика со стопорным винтом, конец которого упирается в лунку на основании. Все резьбовые соединения — М3.