Этот прибор может давать искру длиной до 600 мм. При наличии вакуумной трубки с источником протонов, взятого, например, от ионного микроскопа, можно было бы повторить опыты по расщеплению ядра лития, проведенные Кокрофтом и Уолтоном в 30-е годы. Первоначально эти опыты велись при напряжении 600 кВ, что соответствует напряжению предлагаемого генератора. (Впоследствии выяснилось, что реакция идет и при более низких, вплоть до 10 кВ, напряжениях.) Пучок протонов направлялся на мишень из лития, расположенную в камере Вильсона. Реакция отмечалась по характерному симметричному разбросу следов альфа-частиц (рис. 2).
Рис. 2
Однако Войцеховский видел основное предназначение генератора в более ярком, интенсивном проведении обычных опытов по электростатике. Это может быть программа-минимум и для тех, кто захочет сделать миниатюрный генератор Ван-де-Граафа самостоятельно (рис. 3).
Рис. 3
Главная его часть — полый электрод, установленный на стойке, сделанной из водопроводной пластмассовой трубы. Она закреплена на заземленном основании, где размещается электромотор и второй электрод. В генераторе Войцеховского роль источника для зарядки ленты выполняют пластмассовые шкивы. При этом верхний покрывается полиэтиленовой пленкой, нижний — алюминиевой фольгой. Электромотор приводит в движение через шкив резиновый ремень — носитель зарядов. Заряды же образуются в результате трения ленты о поверхность шкивов.
Их знак зависит от материала покрытия шкива. Если нужно, чтобы верхний электрод имел положительный заряд, а нижний — отрицательный, следует поменять покрытия шкивов. Внутри верхнего электрода укреплена щетка, снимающая заряд с ленты. Лучший материал для ленты — латексная резина, но годится любая резина, не содержащая частичек углерода, либо синтетическая ткань с лавсаном.
Один из самых серьезных вопросов — это изготовление электродов для генератора. Они должны быть максимально близки по форме к шару. Изготовить шар самостоятельно очень трудно, поэтому Войцеховский предложил воспользоваться металлической посудой, кастрюлями, котелками. В целях снижения утечки на коронный разряд поверхность электродов должна быть отполирована.
Электростатический генератор, так же как и воздух в помещении, должен быть сухим. Перед началом демонстрации генератор полезно просушить при помощи фена для волос.
С помощью такого генератора можно показывать интересные опыты, которые с помощью обычных электростатических машин получаются редко и с большим трудом. Они могут стать одной интереснейшей частью программы вечера занимательной науки. Тут окажется вполне уместно рассказать об истории физики, упомянув, что вот этот простой прибор, в сущности, способен расщеплять атомы.
И последнее. Хотя ток, развиваемый генератором, невелик, в работе с ним нужна осторожность. Основание генератора нужно тщательно заземлять. Учитель должен стоять на сухом полу, на резиновом коврике.
Ю. ПРОКОПЦЕВ
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Кто знает, от чего он мигает?
До сих пор, чтобы получить мигание сигнальных светодиодов, приходилось собирать генераторы импульсов. Теперь же с появлением на рынке светодиодов марки L-36 BND, которые мигают сами по себе, все иначе. На рисунке 1 приведена диаграмма тока нового диода.
В характере работы таких диодов нет ничего сверхъестественного. Высокая технология позволила создать в габаритах обычных светодиодов узел, содержащий генератор импульсов, управляющий электронным ключом.
Когда такой светодиод «горит», напряжение источника питания делится между светодиодом и последовательно соединенным токоограничивающим резистором; в паузах свечения все напряжение приложено в запертому светодиоду.
Эти перепады напряжения умельцы использовали, например (рис. 2), для управления цифровой микросхемой DD1, образующей вместе с навесными деталями мультивибратор, с частотой переключения порядка 2 кГц. нагруженный пьезоэлектрическим звукоизлучателем.
Звучание последнего усилено включением буферных элементов DD1.3, DD1.4. Такими простыми средствами удается получить сразу и световую, и звуковую сигнализацию.
Светодиод и последовательный с ним резистор могут меняться местами, а режим генерации нового светодиода возможен при изменении величины сопротивления указанного резистора в весьма широких пределах. При значениях сопротивления, приближающихся к срыву генерации, яркость свечения убывает и даже исчезает вовсе, но выдача серии импульсов еще продолжается. При этом возникает дополнительная генерация с частотой около 2 кГц, а каждый низкочастотный импульс представляет собой пачку сравнительно высокочастотных. Это позволяет избавиться от постройки специального звукового генератора, как на микросхеме DD1 по рисунку 2.