И все-таки лед, похоже, тронулся. Московское правительство, которому приходится ныне менять многие сотни километров подземных коммуникаций столицы, вроде бы заинтересовалось петрургией. Ведь каменные водопроводы и канализация в Древнем Риме служили много веков, и лишь недавно их заменили более современными, но опять-таки каменными — керамическими и бетонными.
Виктор ЧЕТВЕРГОВ
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Стометровый телескоп поможет заглянуть в эпоху… Большого взрыва
Мы еще с привычной гордостью говорим о 5-метровом телескопе Маунт-Вилсоновской обсерватории, построенном в 1949 году, или о 6-метровом телескопе, расположенном близ станицы Зеленчукской (1975 год).
Между тем в планах астрономов Европейской южной обсерватории (ESО) значится создание к 2015 году «Overwhelmingly Large Telescope» (OWL) — нового оптического телескопа, возможности которого превзойдут все ныне существующие рекорды по этой части.
Диаметр зеркала OWL, возвести который задумали в Гархинге, близ Мюнхена, почти в центре Европы, составит 100 м, а вес — 20 000 т.
С помощью подобного прибора высотой 135 м можно будет без труда прочитать надпись на монете, лежащей в 1000 км от него. Говоря иными словами, во Львове грош упадет, в Мюнхене его заметят.
Даже самый крупный на сегодняшний день астрономический прибор — Кеск-телескоп, установленный на Гавайских островах, — по сравнению с проектируемым аппаратом выглядит сущим карликом. В его куполе высотой 31 м хватило места лишь для 10-метрового зеркала. Таким образом, гордость современной науки окажется в 1000 раз слабее будущего гиганта.
Конечно, возвести громадную оптику телескопа ОWL можно, лишь прибегнув к определенным хитростям, ибо отлить цельное зеркало диаметром 100 м невозможно. Его придется составить из 2000 отдельных шестиугольных зеркал. При создании вторичного зеркала диаметром 19 м ученые намерены использовать технологию, чем-то напоминающую, как они шутят, детский конструктор. Зато дополнительные направляющие зеркала диаметром 8,2 и 5,6 м будут отлиты из цельных кусков стекла и очень тщательно отшлифованы.
Упомянем еще одну проблему. Долгое время ученые не знали, как избавиться от такой досадной помехи, как атмосферная рябь. Встроить в телескоп электронные элементы, которые компенсируют искажения, вносимые атмосферой? Это ослабит его прочность. В конце концов, астрономы придумали особую конструкцию. На пути лучей они поставят еще одно, пятое, тончайшее зеркало диаметром всего 65 см — чудо современной техники. На его обратной стороне расположатся полмиллиона крохотных моторчиков, которые, сто раз в секунду меняя форму зеркала, сгладят искажения. Ну а чтобы этот громадный телескоп не обрушился, его поместят в огромную ванну, наполненную маслом.
С появлением нового телескопа сбудется давняя мечта астрономов: наконец-то они сумеют заглянуть на окраину Вселенной (напомним, наше мироздание простерлось на 30 млрд. световых лет). Возможно, тогда ученые сумеют разгадать тайну возникновения Вселенной и объяснят, каким образом 13–15 млрд. лет назад сформировались первые галактики и как черные дыры влияют на звездные системы.
Публикацию по иностранным источникам подготовил А.ВОЛКОВ
Художник Ю.САРАФАНОВ
ИНФОРМАЦИЯ
ЗРИМЫЙ ЗВУК. Уникальные возможности нового ультразвукового микроскопа продемонстрировали на 1-м Международном салоне инноваций и инвестиций специалисты Института биохимической физики РАН. Вот что об этом рассказал заведующий лабораторией акустической микроскопии Вадим Левин:
— Акустический микроскоп работает на частоте до 200 МГц. Это позволяет с его помощью видеть то, что невозможно узреть иными методами. Дело в том, что ультразвук хорошо проникает в объемы различных непрозрачных сред — композитов, полимеров, металлов. В связи с этим широки и горизонты применения новой техники — от биологии до нанотехнологии. В отличие от обычного УЗИ, здесь частота сканирования увеличена в 10–50 раз, поскольку соответственно уменьшена длина сканирующей волны. Таким образом появляется возможность получить и более четкое изображение с выделением мельчайших деталей. Видны даже отдельные клетки, стала хорошо различима структура тканей, те механизмы, с помощью которых клетка движется и сохраняет свою форму.
Этот же прибор используется для изучения структуры композитов на основе углерода, которые ныне становятся основными материалами авиационной и космической техники. С его помощью также проводятся исследования фуллеренов и фуллеритов — шарообразных структур, представляющих собой новое, четвертое, состояние углерода. Среди них оказались материалы даже тверже алмаза, который до недавнего времени считался самым твердым веществом на планете.