Наверное, потому многие пионеры авиации — Фабр, Дорнье, Гакель, Кертисс, Сикорский, Григорович и другие — в определенные периоды своей конструкторской деятельности отдавали предпочтение именно «летающим лодкам». Была в них и острая практическая нужда. Флотоводцы того времени при отсутствии радаров только с «летающих лодок» могли получить информацию о противнике, скрывающемся за горизонтом. И во многих странах мира в начале XX века начали строить патрульные и разведывательные гидросамолеты, в том числе и такие, которые могли базироваться на палубе надводных кораблей и даже подлодок.
Начав с маленьких, иногда даже складных самолетов, гидроавиаторы очень скоро поняли преимущества морской авиации перед сухопутной. Отсутствие шасси, достаточные просторы акваторий позволили конструкторам создавать самолеты с большой взлетной массой. В 30 — 40-е годы XX века гидросамолеты фирм «Мартин» («Марс»), «Дорнье» («До-Х»), «Сандерс-Po» («Принцесса») имели приличный даже для наших дней взлетный вес — от 50 до 150 т. Их салоны были настолько просторны, что иногда пассажиры размещались даже в отдельных каютах, словно на морских лайнерах.
Хорошая обтекаемость поплавков позволяла гидросамолетам даже обгонять сухопутные летательные аппараты с неубирающимися шасси. Не случайно первые рекорды скорости были установлены именно на воде. Так скажем, в 1934 году гидросамолет «Макки-Костальди» «МС-72» развил скорость 709,2 км/ч!
Небольшая летающая лодка «Ш-2» конструкции B.Б. Шаврова имела дополнительные колеса и была способна взлетать и садиться как с воды, так и с земли. Размах крыльев — 13 м. При полетном весе 1000 кг, самолет мог брать на борт до четырех человек. Дальность полета — 1300 км, максимальная скорость 140 км/ч, посадочная — 60 км/ч. Мощность мотора всего 100 л.с., меньше, чем у многих современных легковых автомобилей.
Обратите внимание на небольшие нижние крылья с поплавками на концах. Эти поплавки придают лодке поперечную устойчивость при движении по воде. В случае аварии и разрушения лодки эти крылья, разделенные на 12 герметичных отсеков, не давали ей затонуть. (Проверено практикой.)
Опыт, накопленный во время первого этапа развития гидроавиации, сослужил ей хорошую службу во время Второй мировой войны. Морская авиация оказалась хорошим средством для обнаружения и уничтожения не только надводных судов, но и подлодок, проводила быструю и эффективную разведку, операции по спасению моряков и летчиков с кораблей и самолетов, подбитых противником… Разрабатывались даже гидросамолеты для высадки десанта с моря на берег.
Период «холодной войны», когда во флотах противоборствующих стран появились атомные субмарины-ракетоносители, еще больше повысил роль гидроавиации на море. Охотники за подводными лодками на гидросамолетах могли не только часами «висеть» в воздухе, барражируя над заданным районом, но и приводниться, выключить двигатели и, затаившись, многие часы, а то и сутки прослушивать морские глубины с помощью гидроакустических буев и станций.
Классическим примером такого гидросамолета может послужить «Бе-12» разработки Г.М. Бериева, многие десятилетия верой и правдой служивший нашей армии и флоту.
В 50 — 60-е годы были разработаны и ударные гидросамолеты. Обладая большой дальностью полета и достаточной грузоподъемностью, они могли доставлять через океан атомные бомбы и ракеты. В качестве примера можно вспомнить хотя бы наш «Бе-10» (взлетная масса 50 т) и американский «Си Мастер» (88,9 т).
Чтобы не стать легкой добычей средств ПВО противника, ударные самолеты должны были иметь и высокую скорость. Поэтому конструкторы стали думать об оснащении гидросамолетов реактивными двигателями. Но сделать это оказалось куда труднее, чем на суше.
Не будем забывать, что «летающая лодка» стартуя, разгоняется подобно гоночному скутеру. Но где вы видели реактивные катера?.. А все потому, что весьма трудно рассчитать конструкцию легкую и в то же время настолько прочную, чтобы она могла противостоять ударам волн на большой скорости. А гидросамолет ведь должен не просто разогнаться, но еще и оторваться от водной поверхности, набрать высоту, а в конце полета столь же благополучно приводниться.
Какими должны быть при этом обводы корпуса? Как сделать, чтобы водяные брызги не попадали в воздухозаборники турбореактивных двигателей? Какие материалы использовать, чтобы они могли успешно противостоять усталостным вибрациям, коррозии в воздухе и на воде?.. На все эти и многие десятки других вопросов должны были ответить специалисты, создавая реактивный гидросамолет.