Ю. ПРОКОПЦЕВ, А. АНТОНОВ, А. ИЛЬИН
ЭКСПЕРИМЕНТ
Шарики и физика
Для изучения газовых законов аппаратуры в школах мало. Но даже если ее достаточно, работа с ней трудоемка, а получаемые результаты выглядят невразумительно. Однако посмотрите, как изящно решаются эти проблемы с помощью такого простого прибора, как воздушный шарик.
Надуйте шарик до предела и, завязав, вынесите на улицу. В морозный день шарик вскоре заметно уменьшится в размерах. Если, например, температура в комнате плюс 20 °C, а на улице — минус 20 °C, то объем шарика уменьшится на 15 %, а диаметр — на 5 %. Если вы в комнате измерите периметр шарика портновским сантиметром, то обнаружите вполне ощутимое (на 3–5 см) его «похудение» после пребывания на улице. (Для таких опытов лучше применять шарики большие.)
Надуйте шарики разного размера и натяните их на противоположные концы трубки (рис. 1).
Воздух начнет перетекать из одного шарика в другой. Думаете, большой шарик будет надувать маленький? Нет, маленький шарик надувает большой!
Причина в упругости оболочки. Обращали внимание: резиновый шарик в первые моменты трудно надувать. Когда преодолеете «мертвую» точку, дело пойдет легче. Тут проявляет себя универсальное свойство всех материалов. Вначале они сопротивляются растяжению с большей силой, но по мере дальнейшего растяжения она ослабевает. Наступает даже так называемый «предел текучести», когда для дальнейшего удлинения увеличения силы почти не требуется. У металлов такое состояние предшествует разрушению, а резина, из которой делают воздушные шарики, его прекрасно переносит. У сильно раздутого шара оболочка теряет способность активно сжиматься, и ее давление на газ очень мало. Оболочка шарика маленького размера способность к сокращению не потеряла. Поэтому он и надувает большой.
Возьмите пустую бутылку, пропихните внутрь воздушный шарик, а горловину, оставшуюся снаружи, наденьте на горлышко бутылки. Затем попытайтесь надуть шарик внутри бутылки. Даже если это будет огромная двухлитровая бутыль, у вас ничего не получится. Вообще-то, от вашего дуновения шарик раздуется, но на ничтожно малую величину: давление в бутылке повысится и станет равным давлению в шарике, после чего рост его объема прекратится.
Перед вами на одном уровне висят два шарика. Как, не касаясь шариков руками, их соединить? Решение предельно простое, но не очевидное — подуть между шариками (рис. 2).
Давление воздуха в струе всегда меньше атмосферного. Вот сила атмосферного давления с боков и приблизит шарики друг к друга. Сильная струя воздуха от фена или пылесоса позволяет сделать красивейший опыт. Подведите струю воздуха под шарик и отпустите его. Вначале струя поднимет шарик вверх до точки равновесия, где сила тяжести уравновешивается силой давления.
Казалось бы, после этого шар должен соскользнуть со струи и упасть. Нет, он неподвижно зависнет в этой точке, и его не сможет выбить из струи даже боковой удар. Дело в том, что скорость воздуха в середине струи меньше, чем по бокам.
В соответствии с законом Бернулли давление воздуха меньше в том месте, где больше скорость, то есть в середине струи. Поэтому при малейшем смещении шара вбок возникают силы, стремящиеся возвратить его в прежнее положение.
Слышали рассказы о йогах и факирах, которые преспокойно лежат на досках, утыканных множеством гвоздей? Похоже на чудо?
А вот какой опыт поставил физик С.Н. Кириллов. Надуйте воздушный шарик до больших размеров и положите его на острия гвоздей, вбитых в доску (рис. 3).
Поверх шарика поместите кусок фанеры, а на него поставьте блюдо, которое вы будете загружать, например, гирьками. Самое удивительное, что шарик, лежащий на остриях, выдерживает груз до 3 кг, но не лопается! При проведении опыта важно не допускать перекоса, поэтому желательно сделать каркас с боковыми направляющими. Гвозди следует забивать равномерно по всей плоскости на расстоянии 10–15 мм друг от друга, а острия их полезно слегка затупить.
А вот еще удивительный опыт.
Всегда ли в пламени горит резина?
Налейте в шарик воды и поместите в пламя горелки или свечки. Резина только закоптится и не более того, пока вся вода не выкипит из шарика (рис. 4).
Стенка шарика очень тонкая, и тепло огня свечи проходит через нее в воду. Температура оболочки поднимется лишь чуть выше 100 °C, оставаясь в пределах, которые резина еще выдерживает. Нечто подобное встречается в системах охлаждения ракетных двигателей.