Если бы телескопы и микроскопы стали рассчитывать с помощью этой теории, они развивали бы более низкое увеличение, давали бы нам расплывчатое, окруженное радужной каймой изображение, насыщенное ложными деталями. Попробуйте представить себе современную цивилизацию с такой оптикой!
В XIX веке возникает более совершенная модель эфира. Это идеальная, неподвижная, лишенная вязкости жидкость, заполняющая пространство. При движении в жидкости, лишенной вязкости, тела не встречают сопротивления, и потому мы эфира не замечаем.
На основе теории распространения вихрей и волн в такой жидкости Д.-К.Максвелл создал электродинамику. На ее основе рассчитывается все, что связано с электричеством — от электростанций до компьютеров. Эта же теория предсказала существование радиоволн, а Г.Герц в 1884 году их открыл.
Но любая теория — лишь некоторое приближение к истине. Рано или поздно появляются факты, которые она объяснить не может, и тогда появляется теория более полная. Вот и электродинамика, несмотря на потрясающие успехи, кое-чего объяснить не могла. Например, дальность распространения света в морской воде она ограничивает сотыми долями миллиметров, а в действительности свет проходит в ней сотни метров.
Пытаясь разъяснить нестыковки между теорией и практикой, Д.-К.Максвелл предположил, что реальный эфир по своим свойствам отличается от эфира идеального. В 1880 году он предложил проверить это экспериментально.
Дело было новое, непонятное. Потому на первых порах выдвигалась простейшая задача — хотя бы обнаружить эфир.
Вы знаете: когда автомобиль движется относительно неподвижного воздуха, в его окно задувает ветерок. Точно так же, если Земля движется по орбите относительно неподвижного эфира ее поверхность должен обдувать эфирный ветер, щекой его не почувствовать, скорость его (30 км/с) будет увеличивать или уменьшать скорость света, полагал Максвелл. Измеряя ее, можно определить скорость эфирного ветра и ответить на поставленный вопрос.
С 1881 по 1923 год американские физики А.Майкельсон, Э.Морли и Д.Миллер поставили серию экспериментов и показали, что скорость эфирного ветра у самой земли не превышает 3–3,5 км/с, но увеличивается до 10 км/с на высоте 1750 м.
Итак, эфирный ветер существует. Но почему его скорость неравномерна и не равна 30 км/с? Объяснить это можно по-разному. Возможно, эфир захватывается Землей при ее движении. Но тогда он должен иметь вязкость, следовательно, и в нем самом существует движение.
Выяснилось также, что такие результаты получали тогда, когда эксперименты по измерению скорости света производили в помещениях с тонкими каменными стенами. В глубоких подвалах и особенно за металлическими экранами эфирный ветер обнаружить не удавалось. Все это вызывало немало сомнений и споров.
Возможно, ученый мир разобрался бы, кто прав. Но эксперименты длились сорок лет — слишком долго. Когда в 1905 году А. Эйнштейн предложил считать, что эфира не существует, указав, что «нельзя создать удовлетворительную теорию, не отказавшись от существования некой среды, заполняющей пространство», все с этим согласились.
Обратите внимание, согласились не потому, что поверили: эфира в природе действительно нет, а лишь потому, что его наличие усложняло теорию.
Таким образом, главный постулат теории относительности — см. первые строки статьи — в высшей степени сомнителен. Это понимал и ее автор. В 1920 году Эйнштейн признал, что «пространство немыслимо без эфира, поскольку общая теория относительности наделяет его физическими свойствами». Однако об эфире уже никто ничего не хотел слушать. Ученый мир устал.
Второй постулат теории Эйнштейна гласит, что все процессы в равномерно движущейся системе происходят по тем же законам, что и в неподвижной. Этот постулат был бы невозможен, если бы эфир существовал. Пришлось бы как-то учитывать взаимодействие движущихся тел с неподвижным эфиром.
Третий постулат теории относительности гласит, что скорость света не зависит от скорости его источника. Однако никакого объяснения физического механизма этого явления теория не дает. Между тем, он легко объясним, если учесть, что свет — это волна, движущаяся не относительно источника, а только относительно среды, то есть эфира, в котором он распространяется.
Но скорость света — это предельная скорость распространения электромагнитных волн в пустоте. А другие, не электромагнитные поля могут распространяться в эфире быстрее.
В своем «Изложении системы мира» великий французский ученый П.-С.Лаплас подсчитал, например, что скорость распространения гравитационных волн в 50 миллионов раз (!) выше скорости света. Работу Лапласа проверить никто не пытался. Современная теория эфира, созданная в нашей стране профессором В.А. Ацюковским, показывает, что скорость гравитации превышает скорость света в 1013 раз. Это означает в частности, что сигнал, посланный при помощи гравитационных волн или эфирных вихрей, достигнет границ видимой сегодня части Вселенной всего за 14 часов.