ЕСТЬ ИДЕЯ!
Анатолий Иванов: «Человек мыслит голограммами!»
Как известно, каждая идея, чтобы оказаться верной, должна быть хоть немного сумасшедшей. Вот я подумал: «А что, если?..»
Людям, хоть немного знакомым с голографией, известен такой «фокус». Если разбить стеклянную фотопластинку, на которой была запечатлена голограмма — скажем, объемное изображение некой статуэтки, — то можно потом взять любой кусок разбившей пластинки, осветить ее лучом лазера, и мы опять-таки увидим цельное изображение, а не его фрагмент…
Далее, в 60-е годы XX века, краснодарские исследователи супруги Кирлиан описали такой эксперимент. Если взять свежесорванный лист какого-либо растения, отрезать от него часть, а остаток поместить в высоковольтное, высокочастотное электрическое поле и сфотографировать, то на снимке получится изображение опять-таки целого листа.
Откуда же появилась отрезанная часть? Возможно, и здесь мы имеем дело со своеобразной голограммой…
Наконец, известно, что в мозгу человека 1,4-1010 нейронов. Причем в обыденной жизни, как утверждают некоторые исследователи, мы используем едва ли не 10 % всей «мощности» нашего мозга. Для чего же тогда служат остальные 90 %?
Да, наверное, для того же, что и так называемая «мусорная» часть ДНК в каждой клетке — она хранит образы, то есть опять-таки своеобразные голограммы. Ведь известно, например, что отброшенный хвост ящерицы, оторванная клешня рака, даже отрезанная голова виноградной улитки отрастают заново.
Но как организм знает, какой именно величины и формы орган ему растить? Видимо, где-то, скорее всего в той же ДНК, хранится объемный «чертеж» того или иного органа, по которому и ведется его рост в эмбриональном состоянии, а потом и восстановление, если оно потребуется…
Но если это так, тогда многое становится понятным. Например, почему зрительный центр мозга составляет довольно значительную часть площади всей коры — в нем содержится 7-108 нейронов. А общий объем зрительной памяти составляет 7-1011 бит, или около 1000 гигабайт, информации.
Как мы их используем?
Когда человек начинает работать с компьютером, одно из первых удивлений — большой объем графических файлов. Картинки занимают примерно 0,1–1 мегабайт. Посчитаем, сколько таких изображений помещается в мозгу человека. Делим 1000 гигабайт на 0,1–1 мегабайт и получаем, что «картинная галерея» каждого из нас содержит от 1 до 10 миллионов картинок.
Для чего нам столько? А вот хотя бы для чего.
Увидев на улице человека, которого мы давно не видели, мы обычно секунду-другую перебираем в своем мозгу «картинки» и лишь потом радостно восклицаем: «Здравствуйте, Василий Иванович!»
Что именно представляют собой эти «картинки», ученые пока не знают. Но, по-моему, вполне логично предположить, что они тоже представляют собой своеобразные голограммы. Они ведь бывают не только оптическими, но и могут быть представлены излучениями иной части электромагнитного спектра.
А как показывают энцефалограммы, наш мозг активно излучает электромагнитные волны. Причем интенсивность излучения заметно повышается, кода мы пытаемся что-то вспомнить или сообразить. Такой подход позволяет по-иному взглянуть на некоторые научные проблемы сегодняшнего дня.
Например, исследователи давно уже бьются над прибором, который бы позволил расшифровывать человеческие мысли. Однако пока никак не удается продвинуться дальше расшифровки отдельных слов или даже знаков. Может быть, так происходит потому, что электронного «телепата» не тому и не так учат? И ему нужно умение распознавать не отдельные слова или предложения, а образы, проносящиеся в мозгу?
Такая постановка дела может помочь, скажем, и в освоении телепортации. Вы уже писали (см. «ЮТ» № 5 за 1998 г. и № 8 за 2002 г. — Ред.) о том шуме, который возник в научном мире из-за работ австрийца Антона Цайлингера и его коллег. Они занимаются изучением так называемого парадокса Эйнштейна — Подольского — Розена.
Явление это было открыто еще в начале прошлого столетия, когда исследователи заметили странный феномен. При некоторых условиях кванты света — фотоны — и некоторые другие частицы оказываются как бы связанными попарно. Так что, исследовав свойства одного фотона, мы можем точно указать и свойства второго, «спутанного» с ним. Причем если одна частица вдруг поменяет свои свойства, то мгновенно они изменятся и у другой.