Выбрать главу

Легкий самолет способен барражировать над заранее определенной территорией в течение 14 часов на высоте до 6000 м. При этом обнаружить очаг пожара ему не помешают ни дым, ни ночная мгла, ни низкая облачность. Телекамера ДПЛА имеет разрешение порядка 0,5 м, а инфракрасная камера позволяет обнаруживать даже скрытые очаги возгорания (например, подземные торфяные пожары).

Наземная станция управления может работать одновременно с двумя патрулирующими аппаратами, в то время как третий находится в резерве в готовности к немедленному взлету. В зависимости от полетного задания аппарат автоматически проходит по запланированному маршруту или действует по командам с земли. В это время бортовой компьютер так управляет ДПЛА, чтобы наблюдатели на земле видели именно интересующий их район. Оператор непосредственно вмешивается в управление лишь при его взлете и посадке. Да и то это ненадолго — по словам одного из разработчиков, Николая Павлова, специалисты корпорации «Иркут» создают сейчас автопилот, который позволит автоматизировать весь полет.

Для взлета и посадки новому ДПЛА подходит любой ровный участок длиной 300 м и шириной 10 м. В принципе, возможны взлет и приземление на обычное шоссе.

Владимир БЕЛОВ

Действия ДПЛА в составе мобильной группы машин, предназначенных для ликвидации лесного пожара.

ДПЛА «Иркут» демонстрировался на последнем авиасалоне МКС-2003 в Жуковском.

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Привет от Эйнштейна дошел к нам через 100 лет

В 1905 году в немецком научном журнале «Анналы физики» была опубликована статья никому тогда не известного Альберта Эйнштейна, молодого сотрудника патентного бюро в Берне (Швейцария). Она называлась «К электродинамике движущихся тел». Текст ее, на первый взгляд, примечателен только тем, что в нем, вопреки обычаю, не было ни одной ссылки на работы предшественников. Тем не менее содержание публикации оказалось столь революционным, что спустя много лет Библиотека Конгресса США не пожалела за 30-страничную рукопись 6 млн. долларов!

Электродинамикой занимались, конечно, и до Эйнштейна. Скажем, еще в 1820 году датский физик X. Эрстед обнаружил, что течение электрического тока воздействует на магнитную стрелку — так было установлено взаимодействие электрических и магнитных полей. А в 1831 году знаменитый английский физик М.Фарадей открыл закон электромагнитной индукции и еще ряд других явлений. Наконец, в 1873 году завершил формулировку своих знаменитых уравнений Дж. Максвелл.

Однако все они, как и другие ученые, старались рассматривать явления как бы в «замороженном», квазистатическом виде, чтобы легче было их описывать математическими уравнениями. Эйнштейн пошел дальше и попытался представить, что происходит, когда электрические и магнитные поля взаимодействуют между собой именно в движении. Выполняются при этом классические законы?..

Самое интересное, что при этом ученый не ставил долгими неделями, а то и месяцами хитроумных опытов. Все эксперименты он провел мысленно, а потом описал их ход и результаты уравнениями. Оттолкнулся он от известных опытов Галилея, который велел бросать камни разного веса с вершины наклонной Пизанской башни и с удивлением отметил, что все предметы, не зависимо от массы, достигают земли одновременно.

Строго говоря, Галилей заблуждался. Если учесть сопротивление воздуха, то можно выяснить: разные объекты летят неодинаково. Так что в данном случае был прав Аристотель, некогда утверждавший: более тяжелые предметы летят быстрее легких. Но, на счастье Галилея, он этого не заметил, а потому на основе неправильно поставленного эксперимента сформулировал правильный вывод. А именно: заявил, что масса предмета (сопротивляемость перемещению) и его вес (сила притяжения Земли) хотя и являются совершенно различными свойствами тела, но почему-то имеют одинаковую численную величину!

Это, если вдуматься, крайне загадочное обстоятельство никто не мог объяснить долгое время. И даже сегодня объяснения все еще далеки от идеала. Эйнштейн тоже не стал вникать в суть явления, а просто посчитал его за аксиому. И пошел дальше, поставив довольно простой мысленный эксперимент.