Выбрать главу
* * *

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Электрическая магия памяти

Я видела по телевидению сюжет о мужчине, который потерял память. Он виртуозно играет на рояле, но не помнит, кто он… Как это может быть? Как вообще устроена наша память? Почему одни события мы помним очень отчетливо, а другие быстро забываем?

Наташа Щербакова,

г. Санкт-Петербург

Говоря в целом, человеческая память бывает трех видов — кратковременная, долговременная и генетическая. Иногда специалисты говорят еще о зрительной и слуховой памяти, но такая градация скорее относится к способу запоминания информации, чем к ее хранению. За зрительное восприятие в первую очередь отвечают участки задней теменной и стриарной коры головного мозга. Но вообще-то в процессе запоминания в той или иной степени участвуют практически все основные отделы головного мозга — и базальная часть переднего мозга, и височные доли, и миндалина, и гиппокамп с таламусом…

Однако лишь недавно стали проясняться процессы, происходящие в мозгу на молекулярном уровне, когда мы пытаемся запомнить ту или иную информацию. Вот что, к примеру, пишет по этому поводу заведующий отделом развития и пластичности нервной системы Национального института детского здоровья и развития человека (США) профессор Дуглас Филдз.

«Когда вас впервые представляют незнакомому человеку и он называет свое имя, сведения о новом знакомом попадают в кратковременную память и через несколько минут могут забыться, — отмечает ученый. — Однако если этот человек чем-то вас заинтересовал, сведения о нем могут перейти в долговременную память и храниться там всю оставшуюся жизнь». А наиболее важные сведения для рода человеческого переходят даже в генетическую память и затем передаются по наследству, добавляет профессор.

Но как мозг узнает, какие сведения важные, а какие нет? Как работает механика запоминания на молекулярном уровне? Это стало проясняться лишь после того, как исследователи с помощью самой современной аппаратуры научились регистрировать электрические сигналы, проходящие от одной нервной клетки (нейрона) к другой, по «проводам»-аксонам от передающего нервного отростка-синапса одной клетки к принимающему отростку-дендриту другой. Обычно такие эксперименты проводятся с помощью тончайших электродов, вживляемых в мозг подопытных животных, или вообще на срезе культуры гипокампа, взятого из мозга лабораторной крысы.

Работа эта очень тонкая, требует большой усидчивости и внимания от экспериментатора, точнейшей настройки регистрирующей аппаратуры. Тем не менее, исследования идут, и вот к каким результатам они привели.

Оказывается, чтобы то или иное событие оказалось зафиксированным в кратковременной памяти, достаточно всего лишь электрического возбуждения, проходящего по цепи между несколькими нейронами. Этот сигнал как бы «пробивает» дорогу, налаживает контакт между определенными структурами, чтобы облегчить прохождение повторного сигнала. Но если такого сигнала не последует, возбуждение постепенно спадает, электрический потенциал уменьшается до обычной величины и событие стирается из памяти.

Для того чтобы память о том или ином событии, знакомстве закрепилась, необходимо прохождение повторного сигнала. Например, новый знакомец должен поговорить с вами, сообщив какой-то невероятный, интересный факт. Либо внешность его должна броситься вам в глаза (особенно это касается случаев знакомства с особами противоположного пола). Или само знакомство должно произойти при необычных обстоятельствах.

В общем, так или иначе, по уже налаженной цепи, как по проторенной дорожке, должны пройти повторные нервные сигналы. А они, в свою очередь, становятся катализаторами химических изменений. В мозгу, таким образом, происходит образование определенного вида белков, которые и становятся постоянными носителями того или иного информативного сигнала. Информация о том или ином событии переносится из кратковременной в долговременную память.

Однако чтобы произвести новый белок, требуется включить ни много ни мало генный механизм синтеза. Некий участок ДНК, находящийся в клеточном ядре данного нейрона, должен быть при этом скопирован на относительно небольшую подвижную молекулу, называемую матричной РНК, которая затем выходит в цитоплазму клетки, где специальные клеточные органеллы считывают закодированные в ней инструкции и на основании их производят синтез нужных молекул белка.