Выбрать главу

«Пушечное» сверло и его работа.

Изготовление поршня без помощи токарного станка:

1 — силовой цилиндр; 2 — жестяная вставка.

Схема простейшего станка для резки пенопласта:

1 — трансформатор 12/220 В с изолированной вторичной обмоткой; 2 — нихромовая проволока.

Этот стирлинг работает от тепла руки.

Вентилятор, работающий от свечи.

…а этому для работы достаточно чашки кофе.

А. ИЛЬИН

Рисунки автора

ФИЗИЧЕСКИЕ ЭКСПЕРИМЕНТЫ

Классная дифракция

Казалось бы, стоит присоединить к телескопу микроскоп, и мы получим громадное увеличение, позволяющее видеть самые далекие галактики или гуляющих по Луне ее жителей, если, конечно, они там есть. Это пробовали не раз, но в окуляре прибора появлялись лишь детали изображения, которых в природе нет.

Казалось бы, стоит только добавить к микроскопу несколько линз, и станут видны если не атомы, то вирусы. Но и здесь та же история: появляются какие-то ложные изображения.

Виновато в этом явление дифракции — огибания преграды световыми лучами. Но нет худа без добра. Та же дифракция очень полезна, поскольку позволяет делать красочные наклейки и объемные голограммы, сверхточные химические приборы и антенны радиолокаторов. Так что об этом явлении стоит поговорить подробнее.

Дифракцию света нетрудно наблюдать в опытах. Они описаны в книге: Башкатов М.Н., Огородников Ю.Ф. Школьные опыты по волновой оптике. М., 1960. Вот один из них.

Обычная булавка с колечком укреплена па кусочке дерева и освещена лампой карманного фонаря с расстояния 1–1,5 м. Если на булавку посмотреть через лупу, то станет отчетливо видна дифракционная картина (рис. 1).

Точно так же рассмотрение мелких предметов через микроскоп с очень большим увеличением позволяет отчетливо видеть их дифракционные картины. Они так причудливы, что их нередко принимают за реальные детали, и это иногда приводило к ложным открытиям.

Нетрудно увидеть дифракцию света на круглом отверстии в листе черной бумаги. Для начала сделайте большое отверстие, например, при помощи дырокола. Тогда под лупой будет видна легкая цветная кайма по его краям снаружи. У луча света, выходящего из большого отверстия, дифракционная картина почти незаметна. В большинстве случаев ее можно вообще не учитывать, полагая, что свет распространяется исключительно прямолинейно. Дифракционная картина крохотного отверстия, проколотого в бумаге иглой, гораздо больше, чем оно само (рис. 2). И выглядит как система колец.

Примечательно, что отверстие здесь выступает лишь как источник света с малыми угловыми размерами. Его можно заменить светящейся точкой любого происхождения. Взяв, например, отражение солнца в шарике от подшипника, лежащем на черном фоне, можно увидеть отчетливую картину, состоящую из колец, как дифракция на отверстии.

Отражение солнца в шарике — не что иное, как его оптически уменьшенное изображение. Так, например, в шарике диаметром 3 мм мы видим солнце таким, каким бы оно виделось с очень далекой планеты. Поэтому звезды, находящиеся от нас гораздо дальше, предстают перед окуляром обычного телескопа как крохотные светящиеся точки, при увеличении которых можно видеть лишь их дифракционные картины.

Показать дифракцию целому классу большая проблема. Обычно для этого применяют универсальный проектор. Но во всех опытах получаются большие потери света, поэтому без затемнения они, как правило, не удаются.

Вот как можно показать с помощью такого проектора дифракцию на щели. С помощью установки, состоящей из осветителя с конденсором, двух раздвижных щелей и объектива (рис. 3).

Начнем с того, что развернем лампу на 80–85 градусов, чтобы ее спираль посылала в направлении оси прибора максимум света. Первую щель раздвиньте при помощи регулировочного винта до ширины 1,5–2 мм, установив се в таком месте, где покрывающий ее световой ноток наиболее ярок. Далее поставьте объектив и получите с его помощью четкое яркое изображение щели на экране. Установите за объективом вторую раздвижную щель так, чтобы просвет ее был строго параллелен просвету первой щели.