Выбрать главу

Однако в 1986 году сотрудникам корпорации IBM Иоханесу Бернардсу и Карлу Мюллеру удалось открыть так называемые сверхпроводящие керамики — новый класс соединений, способных переходить из одного состояния в другое при менее низких температурах.

Так, керамика на основе кислорода, меди, бария и лантана, в обычных условиях вообще не проводящая электрический ток, приобретала сверхпроводимость уже при 58К! За открытие этого состояния, названного высокотемпературной сверхпроводимостью, исследователи были опять-таки удостоены Нобелевской премии.

А еще через год группа американских физиков, модифицировав состав керамики, получила сверхпроводимость при 92К! Это уже выше температуры кипения жидкого азота, получение которого относительно дешево. А потому, хотя физическая подоплека этого явления во многом так и остается непонятной, сверхпроводящие керамики уже начали применять в технике, например, для устройства сверхпроводящих магнитов в ускорителях.

Абсолютный рекорд на сегодня, кстати, составляет 138К. Он принадлежит соединению, состоящему из атомов кислорода, талия, бария, меди и ртути.

Впрочем, и у подобных металлокерамик есть свои недостатки. Во-первых, они очень дорогие. Во-вторых, очень хрупкие, и это затрудняет их применение. А потому физики из Национального центра научных исследований Франции в Гренобле под руководством Этьена Бустаре в поисках новых сверхпроводящих материалов провели недавно серию исследований с известным всем кремнием и получили материал, обладающий сверхпроводимостью при нормальном атмосферном давлении.

Что здесь примечательного?

Как известно, кремний имеет кристаллическую решетку сродни решетке алмаза и при комнатной температуре ведет себя как диэлектрик. В его структуре столь мало свободных носителей электрического заряда, что ток через него практически не идет. Однако электропроводность кремния можно изменять в широких пределах, вводя в него примеси других элементов.

Так, например, достаточно очень небольшого количества атомов бора или фосфора, чтобы сделать кремний электропроводным.

Уже при соотношении примеси 8 «чужих» атомов на 100 000 собственных кремний обретает свойства типичного металла. И теория предсказывала, что при более высокой концентрации примесей проводимость кремния может стать сверхпроводимостью. На практике же технологам почти шесть десятков лет не удавалось «втолкнуть» в кремний дополнительное количество атомов примеси. А потому для получения сверхпроводимости в кремнии его приходилось не только охлаждать почти до абсолютного нуля, но еще и подвергать колоссальному давлению — до 100 000 атмосфер!

Распределение примесей в кристаллической решетке.

Тем не менее, в конце 2006 года французским исследователям удалось повысить содержание примесей в кремнии в 10 000 раз. Каким же образом? Ученые пошли на некоторые хитрости.

Сначала кремниевую пластину поместили в газовую среду, состоящую из атомов бора. Когда бор осел на поверхности кремния, образовав тончайшую пленку, поверхность стали облучать импульсами ультрафиолетового лазера большой мощности. Кванты ультрафиолета расплавляли поверхность кремния и как бы «утапливали» в расплаве атомы примеси. При этом кремний остывал столь быстро, что не успевал толкнуть атомы примеси обратно на поверхность. Они оставались словно «заморожены» внутри кристалла. И с каждым последующим импульсом количество атомов примеси все возрастало…

Таким образом исследователям удалось довести концентрацию примеси до 4 %. Это и привело к тому, что хотя кремний по-прежнему приходится очень сильно охлаждать, но его сверхпроводимость наступает при нормальном атмосферном давлении.

Конечно, необходимость охлаждения все еще сдерживает широкое применение сверхпроводящего кремния в технике. Однако полученный материал дешевле других. Исследователи вовсе не закончили свою работу и надеются получить высокотемпературную сверхпроводимость. А она, в свою очередь, глядишь, приведет их к получению очередной Нобелевской премии.

И.ЗВЕРЕВ