Правда, и у Эртля были предшественники. Так, еще в начале прошлого века выдающийся американский ученый, лауреат Нобелевской премии Ирвинг Ленгмюр создал теорию катализа, основанную на двух механизмах.
Согласно первому, во время химической реакции молекулы взаимодействуют в адсорбционном слое на поверхности катализатора. Второй механизм назван ударным. Согласно ему получалось, что реакция идет не только на поверхности, но и в самой структуре катализатора.
Поначалу считалось, что именно этот вариант главный, именно он действует в большинстве случаев. Однако Эртлю удалось доказать, что на самом деле работает главным образом именно первый механизм: реакции проходят в основном на поверхности катализатора.
Это стало фундаментальным открытием, которое сегодня имеет большое практическое значение. Во многих процессах катализаторы стали использовать в виде тонких пленок и порошков, имеющих большую площадь соприкосновения с реагирующими веществами, что обеспечивает высокую производительность индустриальных процессов.
Катализатор в выхлопной трубе современного автомобиля.
Еще один очевидный пример поверхностных процессов — коррозия металлов, происходящая на стыке твердого тела, жидкости и газа. Говоря проще, железо будет ржаветь лишь во влажной среде при наличии кислорода. При этом оно окисляется до гидроксида, образуя на поверхности бурую рыхлую массу — ржавчину. Причем в некоторых странах, особенно с влажным и теплым климатом, процесс этот идет столь быстро, что ежегодно в ржавчину превращается до 25 % производимого железа и его сплавов.
Профессор Эртль разобрался в процессах коррозии и предложил ингибиторы — вещества, которые, в противоположность катализаторам, замедляют окислительные процессы. Разработаны им и рецепты антикоррозийных покрытий, которые позволяют значительно уменьшить экономический ущерб, наносимый ржавчиной.
В последнее время на основе исследований Эртля разрабатываются водородные топливные элементы, которые помогут решить проблемы поисков альтернативных источников энергии и избавить автомобили от бензиновых двигателей.
А. ОРЛОВ, научный обозреватель «ЮТ»
ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ
Как смоделировать ядерный взрыв?
Сейчас, когда многим кажется, что нет предела возможностям суперкомпьютеров, даже специалисты, стали забывать, что кроме цифровых вычислительных машин в технике некогда широко применялись аналоговые. Но, похоже, аналоговые вычислительные установки еще не сказали своего последнего слова.
Для начала несколько слов о том, как работают аналоговые вычислительные машины. Представьте, что вам нужно решить классическую задачу о бассейне и двух трубах. Через одну трубу в бассейн вода вливается, через другую выливается, а вам нужно определить, сколько воды окажется в бассейне спустя определенное количество времени.
В школе вы справляетесь с подобными задачами без всяких компьютеров. Несложно, впрочем, составить и программу для подобных расчетов. Тогда нужно будет лишь подставлять исходные данные, и компьютер автоматически даст ответ.
А в былые времена, чтобы отслеживать подобные процессы в реальном масштабе времени, могли создать и вот такую аналоговую схему (см. рис.). Переменное сопротивление R1 представляло собой аналог первой трубы с краном, сопротивление R2 — второй. Течение постоянного тока заменяло течение воды, а заряд конденсатора С показывал объем воды в бассейне. Меняйте, как угодно, величины сопротивлений, и, замеряя величину напряжения на конденсаторе, вы всегда будет знать, сколько воды в бассейне.
Электрическая схема процессов, протекающих в бассейне, может выглядеть, например, так.
Конечно, мы взяли для примера наипростейшую задачу. И соответственно, аналоговая схема тоже получилась весьма простенькой. В настоящих аналоговых машинах схемы были куда сложнее. Но суть дела от этого не меняется, даже если речь заходит, скажем, о моделировании… ядерных взрывов.