Внутренние стены, напротив, сделаны из материала, хорошо проводящего тепло. На них устроены ребра, образующие лабиринт для продуктов сгорания. Площадь поверхности внутренних стен в десятки раз превышает площадь поверхности обычной печи. Поэтому продукты сгорания передадут жилому помещению все свое тепло и практически холодными покинут дымовую трубу.
При температуре сгорания топлива 1000–1500 °C с ними выйдет наружу не более 10 % энергии, что в 3–4 раза ниже, чем при обычном печном отоплении. Таким образом, А. Смирнов предложил принципиально новый вид жилья и способ его экономичного отопления, пригодный для зон с холодным климатом.
Есть у этого дома и еще одна замечательная особенность, которую автор, видимо, не подметил. Во многих регионах России летняя жара мешает жить не меньше, чем зимняя стужа. Но летом дом А. Смирнова превращается в своеобразный термос с двойными стенками. Легкий поток воздуха между ними за счет конвекции унесет тепло раскаленной солнцем наружной поверхности, а внутренняя останется прохладной. Таким образом, в доме Смирнова зимой будет тепло, а летом прохладно.
Все эти достоинства дают Экспертному совету ПБ основания отметить предложение А. Смирнов авторским свидетельством. А вас, читатели, попросим усовершенствовать идею изобретателя.
Дело в том, что он не предусмотрел в доме окна. Конечно, их можно прорезать, но оконные рамы нарушат теплообмен продуктов сгорания между стенами. Попробуйте найти более совершенное, быть может необычное, решение этого вопроса! Ждем ваших писем.
САМОЛЕТ-АЭРОСТАТ…
…не нуждающийся ни в пропеллерах, ни в реактивных двигателях, предложил Виталий Филиппов из села Бичура, что в Республике Бурятия. На крыльях самолета размещены эластичные баллоны, наполняемые водородом. Могут наполняться водородом и сами крылья, на поверхности которых размещены солнечные батареи. Запас водорода находится под большим давлением в отдельном жестком баллоне на борту самолета.
На старте газом из жесткого баллона наполняют все эластичные емкости самолета и емкости крыла, и самолет взлетает. На некоторой высоте водород быстро перекачивают назад, в жесткий баллон, самолет начинает пологий планирующий полет и снижается почти до земли.
Здесь его баллоны вновь наполняются водородом, и все повторяется. Энергию, необходимую для сжатия водорода, самолет получает от аккумуляторов, заряжаемых солнечными батареями. Автор надеется, что его самолет сможет месяцами летать без посадки. А неизбежную в таких случаях потерю водорода можно будет пополнять электролитическим разложением воды облаков.
Все идеи, заложенные в конструкцию самолета, не противоречат законам природы. Но посмотрим, в какой мере проект Виталия реален технически. Судя по рисунку, автор неправильно представляет соотношение размеров крыльев самолета и тех эластичных емкостей, которые должны поднимать его в воздух.
Подъемная сила водорода по существу ничтожна. С учетом веса баллона она не превышает 1,1 кг на каждый кубический метр (у других газов она еще меньше). Поэтому для поддержания в воздухе даже небольшого самолета нужны эластичные полости значительного объема. Самолет-аэростат Виталия Филиппова при строгом техническом подходе превращается в пузатый дирижабль с небольшими крылышками.
Размах крыльев обычного самолета весом около тонны составляет 16 метров, длина — 12 метров.
Так реально мог бы выглядеть самолет-аэростат Виталия Филиппова.
Далее, по замыслу Виталия, в процессе полета необходимо перекачивать водород из больших эластичных баллонов в маленький жесткий баллон, где он будет храниться под большим давлением. Стоит сказать, что такой способ изменения подъемной силы аэростата известен давно. Еще в 1920-е годы над ним работал известный конструктор американских дирижаблей Чарлз Д. Берджес.
В то время получалось, что подъемная сила водорода, заключенного в стальной баллон при давлении 150 атм, составит лишь 10–12 % от веса самого баллона. Авторитет Берждеса был велик, и на идее поставили крест.
Сейчас уже есть прочные материалы, из которых делаются очень легкие баллоны. Подъемная сила водорода, находящегося в таком баллоне, составляет уже 80 % от его веса. А на очереди новые, в десятки раз более прочные материалы, а значит, есть надежда, что такой способ регулирования подъемной силы аэростата станет реален. Учитывая это, Экспертный совет принял решение удостоить Виталия Филиппова авторского свидетельства Патентного бюро.