Теперь обратимся к схемотехнике. Хорошие результаты (большое усиление при малом количестве деталей) дает трехкаскадный транзисторный усилитель с непосредственной связью между каскадами.
В Германии выпускалась даже подобная микросхема. Упрощенная схема усилителя показана на рисунке 1.
Здесь базы транзисторов VT2 и VT3 непосредственно соединены с коллекторами предыдущих транзисторов, а, как известно, кремниевый транзистор открывается при напряжении на базе около 0,5 В. Таким же будет и коллекторное напряжение VT1 и VT2. Ничего страшного, транзисторы прекрасно работают и при таком напряжении! На коллекторе же VT3 напряжение должно равняться примерно половине напряжения питания, при этом усилитель отдает максимальный неискаженный выходной сигнал.
Ток выходного транзистора VT3 определен сопротивлением телефонов: например, при токе 1 мА падение напряжения на телефонах составит 4,4 В, тогда усилитель надо питать от 9-вольтовой батареи. Все транзисторы охвачены единой цепью отрицательной обратной связи (ООС) через резистор R3, она стабилизирует их режим по постоянному току. Стабилизация осуществляется так: пусть по каким-то причинам коллекторное напряжение VT3 возросло, тогда увеличившийся ток через резистор R3 сильнее открывает транзистор VT1, и напряжение на его коллекторе падает, закрывая транзистор VT2. Его коллекторное напряжение возрастает, открывая транзистор VT3, его ток и падение напряжения на телефонах увеличиваются, и режим приходит в норму.
Усиление этого простого УЗЧ достигает нескольких тысяч, а при использовании транзисторов с большим коэффициентом передачи тока Вст — десятков тысяч. Но есть один недостаток: ток предварительных каскадов хоть и невелик (доли миллиампера), но дополнительно нагружает батарею питания. Явилась мысль использовать и этот ток на пользу — для питания базовой цепи следующего транзистора. Это можно сделать, чередуя транзисторы с разной проводимостью и используя первые два каскада в режиме микротоков (рис. 2).
Как видим, коллекторный ток транзистора VT1 служит током базы VT2, а его коллекторный ток, в свою очередь, током базы VT3 и надобность в резисторах нагрузки отпадает. Все потребление определяется теперь током выходного транзистора VT3, который подбором резистора R3 выставляют в пределах 0,2…0,3 мА. Ток VT2 гораздо меньше, а ток VT1 — еще меньше.
Надо заметить, что в режиме микротоков Вст заметно падает. Напряжение на коллекторе VT3 больше половины напряжения питания, но при работе на индуктивную нагрузку это допустимо — ограничение сигнала при больших амплитудах получается довольно симметричным. В то же время, даже брошенные на стол наушники звучат достаточно громко. При подборе режима полезно руководствоваться следующим: коллекторное напряжение VT3, поделенное резисторами R2, R3 и приложенное к базе первого транзистора, должно составлять около 0,5 В.
Два слова об остальных деталях УЗЧ. Конденсатор С3 предотвращает самовозбуждение усилителя при сильно разряженной батарее с высоким внутренним сопротивлением — ведь сопротивление конденсатора большой емкости для переменного тока мало. Конденсатор С2, шунтируя телефоны, ограничивает полосу пропускания усилителя со стороны высоких частот и «срезает» шипящие призвуки в шуме и помехах.
Для получения «связной» полосы 3 кГц его емкость надо увеличить до 4700…6800 пФ. Конденсатор С1 — разделительный, он пропускает от источника сигнала только переменный ток ЗЧ, не пропуская постоянный и сохраняя, тем самым, режим усилителя. Регулятор усиления R1 включен необычно — движком к источнику. Это уменьшает собственный шум усилителя при малых громкостях, поскольку значительное сопротивление на входе (33 кОм) увеличивает ООС. Еще увеличивать сопротивление R1 не следует, поскольку усилитель может потерять стабильность — самовозбудиться на очень высоких частотах в сотни килогерц.
Питается усилитель от старого аккумулятора сотового телефона, годятся также дисковые или часовые элементы, а также элементы типов АА или ААА. В любом случае нужно три элемента. Срок их жизни при потребляемом токе 0,2 мА будет исчисляться годами.
В. ПОЛЯКОВ, профессор
ДАВНЫМ-ДАВНО
Кофе со сливками в Европе полюбили в середине XIX века. Но городов становилось все больше, а крестьян — меньше. Сливки становились все дороже, и чтобы снизить их цену, нужны были новые технологии.
Традиционно сливки получали методом отстаивания: свежее молоко наливали в высокий и узкий сосуд, где под действием силы тяжести оно расслаивалось. Сливки и жир всплывали, а тяжелая часть — так называемое «тощее молоко» — оставалась внизу. На это уходило не менее 12 часов. Стремясь ускорить процесс, в 1877 г. немецкий изобретатель Лефельд додумался вращать сосуд с молоком вокруг оси. Вращение создавало центробежную силу, превышавшую силу тяжести во много раз. Она и разделяла молоко. Процесс стал занимать всего час.