Выбрать главу

Графен же (graphene, С62Н20) представляет собой тончайшую — в один атом толщиной! — пленку из тех же атомов углерода, объединенных в строгую гексогональную геометрическую структуру. Этот материал был получен исследователями в 2004 году фантастически простым образом. Ученые провели мягким графитовым карандашом по бумаге, а затем «промокнули» ее клейкой лентой, как криминалисты в фильмах, когда снимают отпечатки пальцев преступников на месте происшествия. В результате на пленке остался тончайший слой углерода.

Константин Новоселов

Андре Гейм

Все было так просто, что поначалу профессору Андре Гейму и его коллеге никто просто не поверил. Неужто можно столь обыденным способом отделить от графитового массива тончайшую, в один атомарный слой, пленку графита?

Ученым не верили настолько, что статьи, посылаемые ими в научные журналы, никто не принимал всерьез. А когда наконец удосужились проверить метод, то получили нужный результат далеко не сразу — во всяком деле необходимы навыки и определенный опыт. Но получили!

Совместная работа выходца из Института проблем технологии микроэлектроники и особо чистых материалов РАН (Черноголовка) и голландского исследователя в Университете Манчестера началась в 2001 году. Поначалу они работали порознь. Но когда Андре Гейм, адъюнкт-профессор одного из университетов Нидерландов, был приглашен на должность директора Центра мезонауки и нанотехнологии Манчестерского университета, он, в свою очередь, пригласил поработать вместе с ним молодого коллегу — стипендиата Фонда Леверхульма Константина Новоселова, с которым познакомился на одном из международных симпозиумов.

Как видите, в графите графеновые пленки слабо связаны между собой.

Наловчившись получать тончайшие углеродные пленки, ученые стали исследовать их свойства. И выяснили, что слой графита толщиной в один атом обладает рядом ценных, а порой и неожиданных свойств. Так, эта немыслимо тонкая пленка — в миллион раз тоньше листка обычной писчей бумаги! — обладает высокой прочностью, гибкостью, а главное — стабильностью свойств.

Кроме того, графен имеет высокую тепло- и электропроводность. А для полупроводниковой промышленности как раз необходимы материалы, в которых бы носители электрического заряда — электроны — могли перемещаться без помех. Дело в том, что всюду, где электроны натыкаются на препятствия и отклоняются от заданного прямого пути, идет выделение тепла. Кроме того, подобные потери ограничивают рабочую частоту работы тех или иных компонентов микроэлектронных схем.

Например, в кремнии электроны могут передвигаться относительно свободно. Но у арсенида галлия степень свободы электронов в 6 раз выше. Поэтому в мобильных телефонах и приемниках спутниковых сигналов используются микропроцессоры на основе именно арсенида галлия, а не кремния.

Так вот, это свойство, которое называется подвижностью электронов, в графеновых пленках близко к абсолютному идеалу; электроны практически не рассеиваются и весьма мало реагируют на изменения внешней среды.

Однако произвести точные замеры свойств графена ученым долгое время не удавалось — уж слишком тонка пленка. А потому только недавно выяснилось, что по подвижности электронов графен превосходит все известные на сегодня вещества и в 20 раз выше, чем в арсениде галлия. Это открывает блестящие возможности разработки новых, еще более скоростных, компонентов схем микроэлектроники. Речь уже пойдет не о мега- и гигагерцах, как в нынешних компьютерах, а о террагерцах, то есть в 1000 раз более высоких показателях.

Далее ученые приступили к созданию графенового полевого транзистора, который, используя электрическое поле, обеспечивает так называемый баллистический транспорт электронов, при котором они практически не рассеиваются.

Заготовка графеновой пленки для изготовления транзисторов.

В общем, оказалось, что баллистические транзисторы в принципе способны работать гораздо быстрее, чем обычные кремниевые. А потому открытие Гейма — Новоселова вызвало большой интерес к графену как к материалу для электроники нового поколения.