Сходной точки зрения придерживается и директор Института математических проблем биологии РАН Виктор Лахно. Он полагает, что разработанная профессором Масахико Инойе и его коллегами методика может оказаться весьма полезной, например, в области нанобиоэлектроники.
Основная идея этого научного направления заключается в том, чтобы использовать для создания электронных элементов — транзисторов, диодов, сопротивлений — не полупроводники, а биологические элементы — белки, ДНК, РНК и другие, поскольку молекулы ДНК проводят ток. А синтетические ДНК можно будет даже попробовать наделить свойствами сверхпроводимости.
Обнаружение же проводящих свойств молекулы ДНК, полагает российский ученый, открывает ошеломляющие перспективы. Как уже говорилось, ДНК является хранилищем всей генетической информации у всех живых существ. Причем параметры этого хранилища весьма впечатляющи. Так, диаметр молекулы ДНК составляет 2 нанометра, то есть всего две миллиардные доли метра. И длина ее не так уж велика — около 2 м. Вместить же она может такое количество информации, которое и не снилось самым сверхсовременным суперкомпьютерам.
ДНК уникальна еще и тем, что это единственная молекула, которая способна воспроизводить саму себя. Стало быть, методами самосборки из ДНК можно конструировать различные схемы, пространственные фигуры, решетки…
В Институте математических проблем биологии уже предложен проект создания электронного нанобиочипа, работающего на принципах измерения проводимости отдельных фрагментов ДНК. Его использование позволит не только диагностировать множество заболеваний, но и открыть невиданные перспективы моделирования жизни любого человека, своевременного вмешательства с помощью генетической терапии в случае какой-либо угрозы его здоровью.
Другим важнейшим для нанобиоэлектроники направлением является создание логических элементов на основе небольших фрагментов ДНК, что позволит в миллиард раз увеличить производительность компьютеров.
Сейчас уже создана биоэлектронная память на основе вируса табачной мозаики, которая в 100 раз превосходит по емкости полупроводниковую память. Использование проводящих свойств ДНК позволяет сделать плотность записи информации в миллионы раз большей, чем в современных устройствах. Вся информация, накопленная человечеством за время его существования, сможет поместиться на одном крошечном чипе.
В России, по словам ученого, освоена также технология создания нанопроводов на основе ДНК и бактериофагов. Причем нашими специалистами совместно с французскими коллегами сделано фундаменальное открытие — выявлена сверхпроводимость ДНК-проводов при сверхнизких температурах.
Создав же на основе ДНК нанокомпьютеры, далее можно будет подумать и о создании киборгов — кибернетических организмов, которые будут наделены заранее определенным набором свойств и возможностей. Если не завтра, то послезавтра генным инженерам по силам станет создание, например, дракона — чудища, похожего на динозавра с крыльями, да еще и умеющего изрыгать огонь…
Для чего это нужно? Ну, дракон, быть может, пригодится разве что в качестве персонажа очередного фильма. А вот если мы сумеем создать некий организм, способный переносить температуры до 500 °C, давление около 400 атмосфер, обходиться без кислорода и воды, то его можно отправить для изучения, а потом и колонизации Венеры.
Пока это дело отдаленного будущего. Нужно еще решить множество предварительных задач. Как напомнил профессор С. Киселев, со времен получения в США первой полусинтетической ДНК, в которой были заменены два из четырех азотистых оснований, прошло уже около 20 лет, и работа японцев — всего лишь второй шаг, который удалось сделать в области конструирования ДНК. Стало быть, потребуется еще несколько десятилетий, чтобы освоить технологии столь тонкого манипулирования фрагментами молекул.
Отвечая на вопрос, не несут ли в себе подобные эксперименты потенциальной опасности для человека, профессор С. Киселев сказал: «Если это единичные, очень тонкие и высокотехнологичные работы, то опасности они, скорее всего, таить в себе не будут».