Первые испытания системы предполагаются на самолете «Беркут», для которого должны быть изготовлены новые крылья. «Кроме механических перегрузок, новая система позволяет также измерить температуру практически по всей конструкции самолета, — рассказал один из ее разработчиков, начальник сектора вихретоковых методов неразрушающего контроля ВИАМ Дмитрий Сиваков. — При этом используется оптический сигнал, который обладает высокой помехозащищенностью и способен передаваться на значительное расстояние».
Подобные системы можно использовать не только в авиации, но и на земле. Скажем, в атомной энергетике с ее помощью можно будет постоянно вести диагностику состояния атомных котлов. Кроме того, такие системы пригодятся в огромных небоскребах, при эксплуатации мостов.
Эта демонстрационная модель вот уже полгода кочует с выставки на выставку. И когда она попала нам на глаза в третий раз, мы решили все же разобраться, почему многие посетители задерживаются у стенда МАИ, демонстрирующего некую железную дорогу в миниатюре с вагонами, один из которых находится сверху пути, а другой почему-то сбоку.
Один из авторов разработки, Роман Ильясов, легким щелчком отправил вагончики в путь. И те с огромной скоростью начали бегать по кольцевой дороге, не останавливаясь. Между тем никаких моторчиков в самих вагонах не было. Да и колес тоже.
Оказывается, вагончики имеют магнитную подвеску и никакого видимого контакта с дорогой и, стало быть, сопротивления трения, кроме воздушного, не испытывают.
Вообще-то подвески на основе магнитной левитации в мире существуют уже несколько десятков лет. Однако, как правило, магниты у них слишком тяжелы и громоздки, а вагоны, особенно на поворотах при высокой скорости, не всегда надежно себя ведут — могут сойти с пути.
Этих недостатков лишена система, разработанная молодыми учеными МАИ совместно со специалистами из ФПО «Новые транспортные технологии». Принцип ее действия таков. Трасса выложена рядами постоянных магнитов, причем так, что полярность их на всем протяжении одинакова. Под вагоном установлена подвеска с низкотемпературным сверхпроводником, становящимся таковым при температуре минус 182 °C.
Сверхпроводник, изготовленный с помощью спекания из порошков иттрия, бария, сверхчистой меди в присутствии кислорода, обладает необычным свойством. Будучи охлажденным жидким азотом до состояния сверхпроводимости, этот материал как бы запоминает структуру данного магнитного поля. При случайном изменении положения сверхпроводника относительно этого поля в подвеске появляются токи и возникают силы, стремящиеся вернуть ее, а с ней и весь вагон в первоначальное положение.
Двигаться поезд может с помощью самых разнообразных двигателей — линейных электрических, реактивных, ДВС с пропеллерами… Скорость при этом может достигать 500 км/ч. Единственная помеха — встречное сопротивление воздуха. Но если такие вагоны будут использоваться в тоннелях, где можно создать разреженную атмосферу, скорость может стать хоть сверхзвуковой!
Все это кажется пока фантастическим. Но уже изготовлена рабочая модель вагона на такой подвеске грузоподъемностью 500 кг, проведены ее испытания. Так что, вполне возможно, в недалеком будущем и на земле появится достойный конкурент авиации.
Припарковать автомобиль в большом городе так же непросто, как и проехать, не застревая в транспортных пробках, из пункта А в пункт В в часы пик. Интересный выход из положения предлагают специалисты ООО «Тушинский машиностроительный завод». Здесь разработана вертикальная автоматизированная автостоянка МАС-251. Это установленный на фундаменте каркас из металлических профилей, на которых подъемник производит установку поддонов с автомобилями.
В нижнем ярусе расположена въездная зона с подъемными воротами, постом оператора, оборудованием системы управления. Парковка и выдача автомобиля осуществляются без участия водителя. Система автоматически распределяет автомобиль на свободную ячейку, а также выдает его владельцу.
Вместимость — до 60 автомобилей. Занимаемая площадь — 124 кв. м. Среднее время выдачи автомобилей — 2,5 минуты. Высота комплекса — до 26 м.
Стоит на дороге образоваться гололеду, и хоть из гаража не выезжай. Автомобили то и дело идут юзом, неизбежны столкновения…
Значительно уменьшить неприятности позволит система, разработанная сотрудницей санкт-петербургского ЦНИИ «Электроприбор» Татьяной Беляевой. В основе ее лежит так называемый микромеханический гироскоп. Он состоит из механической и электронной частей в виде двух кристаллов размером со спичечную головку. Механическая часть устанавливается на колесе, а электронная, фиксирующая скорость (диск диаметром 3 мм), — на корпусе автомобиля. При вращении диска на него начинает воздействовать кориолисово ускорение. От емкостных датчиков, имеющихся на гироскопе, идут сигналы о величине угловой скорости и ничтожнейших ее изменениях.