Впрочем, чтобы создать «шапку-невидимку», придется соблюсти две тонкости. Во-первых, необходимо, чтобы луч света изгибался плавно. А для этого нужно, чтобы параметры среды менялись постепенно. Во-вторых, чтобы добиться невидимости, нужны материалы, у которых и диэлектрическая, и магнитная проницаемость меньше единицы.
В природе таких материалов просто нет, их пришлось создавать искусственно.
Впервые о возможности создания метаматериалов с необычными, заранее заданными качествами, как мы писали, еще в 1967 году заговорил советский физик Виктор Веселаго, сотрудник Института общей физики имени А.М. Прохорова РАН.
Теоретики наши и по сей день на высоте — вспомним хотя бы о разработках ульяновского профессора Олега Гадомского, несколько лет назад опубликовавшего еще одно сенсационное исследование подобных материалов — он доказал возможность получения эффекта невидимости в тонких золотых пленках. А вот с практикой дело сложнее.
Впервые создать метаматериал с определенными свойствами удалось в 2000 году американцам. Шесть лет спустя группа ученых США и Великобритании под руководством профессора Дэвида Смита сконструировала и прототип устройства, которое могло скрыть объект от микроволнового излучения.
Первая в мире «шапка-невидимка» представляла собой десяток вложенных друг в друга цилиндров из печатных плат с «вставленными» в них резонансными элементами. В самый маленький цилиндр исследователи спрятали медный стержень. Затем всю конструкцию «прощупали» электромагнитным излучением, наблюдая за его отражением. Устройство действительно создавало иллюзию пустого пространства.
Правда, выявились и слабые места конструкции. Во-первых, «шапка» оказалась более-менее эффективной только для очень узкого диапазона электромагнитных волн (8,5 гигагерца), а при малейшем изменении частоты эффект тут же исчезал.
Во-вторых, «шапка-невидимка» сильно поглощала излучение. Электромагнитная волна, прошедшая через оболочку, на выходе теряла почти всю энергию. Если бы речь шла об оптическом диапазоне, наблюдатель увидел бы либо очень слабое изображение предмета, который должен находиться за «шапкой-невидимкой», либо просто темное пятно.
Тем не менее, начало было положено. И вскоре та же группа ученых разработала уже не «шапку», а скорее «плащ-невидимку». Вместо экрана из диэлектрика, который должен скрывать предмет полностью, исследователи предложили сделать на нем покрытие из проводящих материалов. Если объект спрятать под такую «накидку», то лучи будут отражаться от него, словно от плоской поверхности. А значит, хотя сама «накидка» и будет видна, наблюдатель не узнает, что за ней спрятано.
В мае 2009 года две американские научные группы из Корнеллского и Калифорнийского университетов заявили, что им удалось существенно улучшить результаты предшественников; они вплотную приблизились к видимому диапазону электромагнитного спектра.
Для этого группа из Корнеллского университета (руководитель Михаль Липсон) использовала в качестве основы двуокись кремния с вкрапленными в нее крупинками кремния диаметром 50 нанометров. Их коллеги из Калифорнии, возглавляемые Сян Чжаном, сделали из двуокиси кремния с прорезанными в нем отверстиями диаметром 110 нанометров «коврик»-покрытие. Оба устройства эффективно работают в инфракрасном диапазоне волн, который граничит с видимой красной частью спектра.
Аналогичное устройство разрабатывают физики Университета Пердью в Уэст-Лафейетте (штат Индиана). Как рассказал работающий в США российский физик Владимир Шалаев, возглавляющий группу создателей этой «шапки», пока существует лишь математическая модель будущей конструкции. По описанию физика, «конструкция, воплощенная в реальные материалы, будет представлять собой полый стеклянный цилиндр с толстыми стенками. Внутри, перпендикулярно к вертикальной оси цилиндра, разместятся крохотные наноиголки из золота или серебра. Именно их размер и определяет, на каких длинах волн будет работать устройство»…
Благодаря «иголкам», показатель преломления, определяющий распространение света в среде, меняется от нуля на внутренней поверхности цилиндра до единицы на внешней, что соответствует показателю преломления воздуха. В результате свет плавно «обтекает» цилиндр, не испытывая рассеивания или отражения, не проникая во внутреннюю полость конструкции.