Выбрать главу

Управление перспективных исследований Министерства обороны США уже заинтересовалось возможностью применить изобретение в военных разработках — униформа-электростанция весьма пригодится, например, диверсантам для питания персональных радиостанций, радиомаяков и другой аппаратуры.

Применение волокнам могут найти и в медицине. Как предположила главный исполнительный директор Института нанотехнологий Оттилиа Саксл, «изобретение, возможно, будет использовано в миниатюрных медицинских аппаратах, например слуховых аппаратах или кардиостимуляторах»…

Ткань для чистюль

Наконец, нанотехнологии, похоже, вскоре помогут решить и еще одну проблему, донимающую многих. А именно проблему чистоты одежды.

Уникальную ткань, которой не страшны никакие пятна, разработали австралийские ученые из университета Монаш. По словам одного из авторов новшества, профессора Валида Даута, уникальная ткань соткана из обычных волокон, в которые были добавлены специальные нанокристаллы диоксида титана, разрушающие на молекулярном уровне любое грязное пятно. Единственное, что нужно для начала химической реакции — это наличие прямого солнечного света.

«Данное вещество, используемое в производстве зубной пасты и красок, представляет собой сильный фотокатализатор. В присутствии ультрафиолетового света и водяного пара оно формирует гидроксильные радикалы, вызывающие окисление или разложение органического вещества», — рассказал исследователь.

При этом нанокристаллы не наносят вреда самой ткани или человеческой коже. Важно и то, что в зависимости от вида материи можно использовать химические вещества различного типа.

Так, ткани из хлопка оказались наиболее простыми в обработке: для их «пропитки» можно применять мелкие нанокристаллы в небольшом количестве. В то же время шерсть или шелк оказались гораздо более сложным материалом, они требуют нанокристаллов большего размера в больших количествах.

Тем не менее, специалисты считают, что функция самоочищения сначала найдет себе применение в медицинских учреждениях, где всегда есть необходимость в стерильности, а затем распространится повсеместно.

В. ВЛАДИМИРОВ

Обмундирование для «призраков» скоро будет готово

Много раз читал в «Юном технике», что ученые вплотную подошли к созданию метаматериалов и устройств, способных делать предметы не видимыми глазу. Но созданы ли уже первые «шапки-невидимки»?

Алексей Безродный, г. Тамбов

Мы и в самом деле уже не раз рассказывали вам об удивительных свойствах метаматериалов. Время идет, ученые работают и сообщают все новые подробности о своих разработках, но начать стоит с истории.

Еще в 1660 году французский математик Пьер Ферма (тот самый, что сформулировал условия своей знаменитой теоремы, которую удалось доказать лишь недавно, спустя 300 с лишним лет) выдвинул еще один постулат: он предположил, что луч света всегда выбирает кратчайший путь, то есть движется по прямой. А если встречается препятствие, часть лучей света рассеивается, часть отражается, благодаря чему мы и видим изображение предметов.

Но что, если изменить свойства участка пространства таким образом, чтобы световые лучи стали огибать его, считая именно этот путь самым коротким?

Уподобим окружающее нас пространство некой ткани, в которой составляющие ее волокна представляют собой траектории световых лучей. В обычном состоянии лучи идут прямо, как нити в полотне. Если же аккуратно раздвинуть волокна, не повреждая их, получится дырка — пустой участок, куда лучи света не попадают вообще. И любой объект, попавший в такую дыру, покажется невидимым.

Искривлять световые лучи ученые уже научились. Например, достаточно загнать их внутрь оптического волокна, и хоть в узел завяжи — луч света все равно не выйдет за его пределы.

Но можно ли проделать подобный «фокус» в пространстве?

Посмотрите хотя бы на карандаш, опущенный в стакан с водой. Видите, на границе воды и воздуха карандаш будто изломан, хотя на самом деле он цел-невредим. Такой обман зрения обеспечивает преломление света на границе двух сред — воздуха и воды.

Коэффициент преломления материала показывает, насколько луч отклоняется от прямой, когда переходит из одной среды в другую. Он определяется диэлектрической и магнитной проницаемостью вещества. Подобрав вещества с определенными значениями этих двух параметров, можно, что называется, «поиграть» со светом, создавая странные эффекты.