Явление же магнетизма всегда было окутано мистической завесой. Первыми о свойствах магнита упоминают древние китайцы около 5000 лет назад. В Европе сам термин «магнетизм» долгое время был синонимом оккультных явлений. Загадочные же свойства некоторых минералов притягивать металл стали понятны лишь в XIX веке, когда английский физик-самоучка Майкл Фарадей установил связь между электричеством и магнетизмом и ввел в теорию понятие магнитного поля — субстанции, передающей магнитные силы.
Английский теоретик Джеймс Максвелл в 60-е годы XIX века окончательно утвердил единство электричества и магнетизма, выведя ряд уравнений, которые описывали свойства как электрических, так и магнитных полей примерно в одинаковых математических выражениях. Но при этом вскоре выяснилось, что лишь электрическая сила вела себя вполне предсказуемо. Она имела несущие заряд частицы, величину и массу которых можно было измерить. Зато источник магнитного поля — магнитные заряды, или монополи — найти так и не удалось.
Схема опыта по обнаружению монополя:
1 — нейтроны; 2 — струны и монополи Дирака; 3 — магнитное поле; 4 — результаты рассеяния.
И такая асимметрия — неодинаковое поведение единых по сути сил — по сей день не дает покоя физикам.
Как сказал один из них: «Это все равно, как если бы мы слышали аплодисменты, но видели при этом только одну хлопающую ладонь»…
В самом деле, в уравнениях Максвелла для полей сразу же бросается в глаза их симметричность. Оба поля — и магнитное, и электрическое — равноправны. Более того, они взаимосвязаны: изменяется электрическое поле — возникает магнитное, изменяется магнитное — возникает электрическое. Однако на практике в двух из четырех уравнений Максвелла симметрия нарушается: электрические заряды существуют, а магнитных не нашли; линии электрического поля начинаются и заканчиваются на зарядах, а линии магнитного поля представляют собой замкнутые окружности.
Вот потому-то Поль Дирак и предположил, что в природе, по аналогии с электрическим, должен существовать и единичный магнитный заряд — монополь. Он даже рассчитал, каким этот монополь должен быть.
По расчетам получалось, что магнитный заряд монополя должен иметь довольно большую для элементарной частицы массу и, следовательно, значительную ионизирующую способность. Благодаря этому, двигаясь сквозь вещество, монополь должен, по идее, «сдирать» по дороге электроны с орбит атомов. И след таких «ободранных» атомов можно, в принципе, засечь в экспериментах на ускорителях или при наблюдениях в природе.
Структура, в которой три иона «указывают» внутрь (с голубым шаром внутри), представляет собой «северный монополь».
Структура с одним ионом есть не что иное, как «южный монополь». Следы монополя усердно искали и в космических лучах, и в метеоритах, в земном и лунном грунте, в экспериментах на ускорителях. Но практически все эксперименты, за исключением некоторых (о них речь впереди), закончились неудачей.
Зимой 1982 года пришла долгожданная весть: исследователь Блез Кабрера из Стэнфордского университета, США, наконец-таки зарегистрировал сигнал, весьма похожий на след монополя! Почти полгода ученый караулил монополь с помощью электроники. Она и зарегистрировала сигнал, который мог породить монополь, пришедший на Землю из космоса.
Обрадованный Кабрера оповестил о своем успехе коллег. Его опыт попытались повторить в нескольких лабораториях. Но… безуспешно.
Тогда Иошинори Токура из японского Национального института передовых технологий и прикладной науки решил поискать следы магнитных монополей иначе, чем Кабрера. По его мнению, поведение магнитных монополей могло бы влиять на так называемый аномальный эффект Холла.
Суть эффекта, открытого англичанином Эдвином Холлом в 1879 году, такова: если пропустить ток по металлической пластинке, помещенной в магнитное поле, в ней появится электрическое поле, перпендикулярное как направлению магнитного поля, так и направлению тока. Это объясняется поведением электронов, смещающихся под воздействием магнитного поля к одной из граней пластинки.
В 40-е годы прошлого века российский академик Исаак Кикоин исследовал эффект Холла и показал, что в ферромагнетиках, наряду с обычным эффектом Холла, связанным с магнитным полем, существует и некий аномальный эффект: некоторые материалы генерируют электрическое поле, если даже через них не пропускать ток. Этим отличаются, например, висмут, мышьяк и сурьма.