Выбрать главу

Разработанные в России сетчатые композитные конструкции получили признание за рубежом и даже особое название — Russian Anisogrid Structures.

Подобная технология интересна и авиастроителям. Уже завершен эскизный проект композитной конструкции секции фюзеляжа, стабилизатора и концевой части крыла для отечественного пассажирского самолета МС-21.

Понятное дело, что освоить такую технологию инженерам помогают текстильщики. Они принимают активное участие в новых разработках. Так, по словам ректора Московского государственного текстильного университета (МГТУ), профессора, доктора технических наук С.Д. Николаева, более трети материалов, используемых в летательных аппаратах, состоит из «технотекстиля».

Работы эти были начаты на кафедре технологии трикотажа еще в 70-х годах прошлого столетия совместно со специалистами НПО прикладной механики, возглавляемым тогда академиком М.Ф. Решетневым. Текстильщики совместно с инженерами трудились над созданием легких, прочных и гибких материалов на базе вязаных сетеполотен.

Группа специалистов под руководством профессоров Л. А. Кудрявина и В.А. Заваруева разработала технологию производства трикотажа из тончайших металлических нитей. Нить, а точнее, проволока диаметром 30–50 мкм, была использована для создания антенны, которую в 1985 году установили на космической станции «Мир».

В последующих разработках для повышения эластичности материала и снижения его веса была разработана технология вязания антенн из вольфрамовой микропроволоки диаметром 11–15 мкм и стальной — диаметром 20 мкм. Из них стали «ткать» сетеполотна с размеров ячейки до 0,2 мм.

Шуховская башня на Шаболовке.

Обрабатывать такие волокна на обычных текстильных машинах оказалось не просто: проволока не переносит многократных изгибов, ломается, пружинит. Но наши ученые нашли выход из положения — проволоку окутали оболочкой из материала, который можно было после того, как трикотаж готов, просто-напросто сжечь.

Трикотажное сетеполотно оказалось почти идеальным материалом для отражательной поверхности антенн телекоммуникационных спутников. Оно прекрасно складывается или разворачивается, не оставляя складок на поверхности антенны. А для улучшения радиоотражающих свойств на сетеполотно наносятся покрытия из золота или никеля; в итоге коэффициент радиоотражения достигает 99 %.

Сетка легкая, она весит всего около 30–40 г/м2, что очень важно для космической техники, когда каждый избыточный килограмм, выводимый на орбиту, обходится в несколько лишних тысяч долларов. В качестве материала для полотна наши специалисты используют сталь, вольфрам или молибден. Трикотажный материал поверхности антенны выдерживает удары космических частиц. Сегодня, когда идет подготовка к запуску космических радиотелескопов «Радиоастрон» и «Миллиметрон», сетеполотна для отражения радиоволн востребованы как никогда.

На кафедре технологии трикотажа занимаются и крупноячеистым сетеполотном, которое успешно применяется для изготовления подложек солнечных батарей космических кораблей, а также, как уже сказано, для изготовления элементов конструкций самих ракет.

Публикацию подготовил В. ВЛАДИМИРОВ

ПРЕМИИ

Свет и электричество

ПОЗВОЛЯЮТ ЗАФИКСИРОВАТЬ И ПЕРЕДАТЬ ИНФОРМАЦИЮ ЗА СОТЫЕ ДОЛИ СЕКУНДЫ

Лауреатами Нобелевской премии по физике 2009 года стали трое американских ученых.

76-летний Чарлз Као удостоился высокой награды «за новаторские достижения в области оптоволоконной связи». Или, говоря проще, за то, что в 1966 году выполнил вычисления, которые позволили ему с уверенностью заявить: световой сигнал по стекловолокну можно передать на расстояние более 100 км. Это было на редкость смелое заявление, поскольку на практике в то время по волоконным проводникам сигнал передавали на расстояние не более… 20 м!

Однако Као это не смутило. Он верил в свои расчеты и показал, как достичь теоретических показателей на практике. По его мнению, нужно было не столько улучшить конструкцию волоконного кабеля, сколько повысить качество самого стекла, избавив его от примесей, задерживающих и искажающих сигнал.