По его расчетам, если вращается черная дыра, набравшая более миллиона солнечных масс, наподобие той, что находится в центре нашей Галактики (4 млн. солнечных масс), то внутри ее для фотонов и для нейтральных частиц могут существовать стабильные периодические орбиты. Для фотонов это орбиты круговые. У нейтральных частиц — нейтронов, молекул и даже планет вроде Земли — орбиты сложнее, они напоминают собой вращающуюся розочку. По словам Докучаева, орбиты эти не замкнуты, что, собственно, и не удивительно — орбита Земли, например, тоже не замкнута.
Планета наша, строго говоря, обращается вокруг Солнца по некой спирали. И самый главный вывод, который можно сделать из расчетов В. Докучаева: на планетах, движущихся по таким внутренним орбитам, может существовать жизнь.
Запредельной гравитации, царящей внутри черных дыр, жители таких планет не почувствуют, поскольку фактически будут все время находиться как бы в состоянии свободного падения. А все чудеса, связанные с пространством-временем, будут существовать только для стороннего наблюдателя, но не для них самих. Их планета будет вращаться вокруг центральной точки, словно Земля вокруг Солнца. И на ней никогда не будет ночи, поскольку в дополнение к свету, идущему от центра, ее будут освещать фотоны, движущиеся по своим стабильным орбитам.
Правда, сам Докучаев не утверждает того, что в таких условиях в черной дыре может зародиться жизнь. Он лишь предполагает, что внутри черной дыры может найти себе прибежище цивилизация, попавшая туда волею судеб уже в развитом состоянии.
«Цивилизации такого рода, — говорит ученый, — по уровню развития должны обгонять нас на миллионы, если не на миллиарды лет. Если вдруг по каким-то причинам они захотят укрыться в черной дыре, то могут поселиться на уже существующей планете, а смогут остаться и в собственной «сфере Дайсона».
Такие сферы еще в середине прошлого века придумал известный американский физик Фримен Дайсон в качестве транспортного средства для межзвездных путешествий. По размеру эти сферы могут быть сравнимы с планетами или даже располагаться вокруг них этакой замкнутой защитной оболочкой. А внутри них могут жить сотни тысяч и даже миллионы людей, воспроизводя свой род поколение за поколением, пока не достигнут цели. И уж они-то, с их уровнем развития науки и техники, смогут справиться с прожигающим светом внутри черной дыры.
Итак, в черной дыре тоже возможна жизнь… Воистину физики могут додуматься до вещей, которые и не снились фантастам. Впрочем, Докучаев подчеркивает, что от фантастики его работа далека, поскольку все его расчеты основаны на известных физических законах.
Жалко только, что пока нельзя практически проверить гипотезу российского ученого, слетав в гости к жителям черных дыр. Ведь никто еще не сумел разглядеть толком и сами дыры. Некоторые исследователи до сих пор сомневаются в их существовании. Тем не менее, не зря же, наверное, говорят, что истинными оказываются как раз самые безумные теории.
С. НИКОЛАЕВ
ПО СЛЕДАМ СЕНСАЦИЙ
Нож не режет, пуля не берет!
Исследователи Голландии под руководством биохимика и дизайнера Джалилы Эссаиди смогли, казалось бы, невозможное. Они нашли способ сделать пуленепробиваемой человеческую кожу. Причем помогали им в этом… паук, коза и генетика. А дело было так…
Мы вам уже рассказывали (см. «ЮТ» № 2 за 2003 г.), как канадские и американские ученые внедрили в геном козы гены паутины, смогли получить козье молоко, которое теперь может быть использовано для создания… прочных бронежилетов и наложения послеоперационных швов.
Паучий же ген понадобился вот для чего. Природа создала множество материалов с удивительными свойствами. Взять, к примеру, обыкновенную паутину. Ее нити способны вытягиваться на треть своей длины, впятеро прочнее стали на разрыв и при этом несравненно легче.
Справедливости ради надо отметить, что речь идет лишь об одном сорте паутины — нити основы, самой прочной и толстой (около 5 мкм), из которой некоторые виды пауков строят каркасы ловчих сетей. На самом деле самка паука может делать семь видов паутинного шелка: их выделяют разные железы насекомого, и предназначены они для разных целей, поэтому их структура и свойства сильно отличаются.
В свое время, использовав паутину крупных тропических пауков, искусные ткачи смогли соткать тончайшие, но очень прочные перчатки для Наполеона. Узнав, из чего сделан подарок, император тут же загорелся идеей оснастить свой флот паутинными парусами. Однако расчет показал: даже пауки всей Земли не в состоянии наткать паутины, чтобы обеспечить парусным вооружением хотя бы один корабль.
С той поры исследователи стараются заменить паутину ее искусственным аналогом. Однако синтезировать материал, из которого сделана паутина, долгое время никому не удавалось. Дело в том, что, как показал анализ, паучий шелк — сложнейший композиционный материал, состоящий из двух видов белков. Молекулы эти весьма хитро переплетены, причем часть белка находится в аморфном состоянии, а часть (от 30 до 45 %) — в виде кристаллов: первые обеспечивают эластичность, а вторые — прочность. Сделать такой материал, что называется, вручную невозможно. И тогда исследователи монреальской компании «Нексиа биотекнолоджиз» пошли обходным путем — вывели породу коз, в геном которых встроены гены паука, отвечающие за выработку паутины. Выработанный ими протеин и стал основой для получения легкого и прочного волокна, которое президент фирмы «Нексиа» Джеффри Тернер назвал «биосталью».
Кстати, подобные работы ведутся и в России. В Государственном научно-исследовательском институте генетики и селекции промышленных микроорганизмов под руководством доктора биологических наук, члена-корреспондента РАН Владимира Георгиевича Дебабова расшифровали ген, ответственный за выработку паутинного белка у крестовика уемуры — крупного, размером в полкулака, паука, обитающего на Дальнем Востоке. Затем ученые сумели синтезировать аналог этого гена. Синтезированный ген встроили в геном дрожжей-сахаромицетов, после чего эти микроорганизмы стали вырабатывать паутинный белок.
Ученые сумели выделить его из дрожжей в достаточных количествах, очистить, подобрать для него растворитель и сделать тончайшие пленки на стекле, которые были подвергнуты затем всестороннему изучению. Исследования показали, что в полученных пленках прослеживается та же структура, что и в природной паутине. Другими словами, ученым удалось получить аналог природного композиционного материала. Технологические решения по части прядения разрабатывают ученые в научно-исследовательском центре «Углехимволокно» (г. Мытищи). Впрочем, исследователи еще тогда, около десяти лет назад, полагали, что проведенные исследования — лишь первый шаг на пути к промышленной технологии, когда из наработанного микроорганизмами белка можно будет делать тончайшие нити. «Рукотворную» паутину предполагалось использовать для изготовления легких и надежных бронежилетов, частей летательных аппаратов, в строительстве и медицине…
Однако даже сами дерзкие исследователи не додумались, что вместо бронежилета можно сделать пуленепробиваемой саму кожу человека или, скажем, полицейской собаки. И вот ныне этот следующий шаг сделан в Голландии. Проект носит название «2,6 г, 329 м/с». Это стандартный вес и скорость пули, выпущенной из винтовки 22-го калибра. На эти характеристики рассчитан самый мощный бронежилет.
В лабораторных условиях исследователи смогли совместить человеческую кожу и паучью нить. Получившийся материал при этом действительно способен наделить людей суперспособностями. Например, отражать пули калибра 5,66.
Испытания показали, что кусок синтетической кожи, выращенной в лаборатории, выстоял под ударом свинца. Ради этого момента, который можно увидеть только при замедлении сверхскоростной съемки, ученые со всего мира упорно трудились около года.