Оказалось, что эти исследования весьма полезны на практике. Так, именно из-за появления капель-субсателлитов многие струйные принтеры оставляют не совсем четкий оттиск. Теперь, зная, что за микроскопические процессы протекают внутри каждой капли, можно изготовить струйный принтер, работающий так же четко, как лазерный.
Следующий шаг сделали европейские коллеги американского профессора. При анализе работы того же струйного принтера им удалось обнаружить ранее неизвестный феномен. В момент столкновения водяной капли с бумагой или иной твердой гидрофобной поверхностью от капли отделяется тончайшая струйка. Причем скорость ее в 40 раз превосходит скорость падения самой капли!
Это наблюдение Денис Бартоло из французской Ecole Normal Superieure и его коллеги из Нидерландов зафиксировали на видео и рассчитали, что при начальной скорости капли, равной 50 см в секунду, скорость отделяющейся от нее тонкой струйки равна 20 м в секунду.
Однако если увеличить скорость капли, сделав ее больше 70 см в секунду, этот эффект исчезает. Почему?
Исследователи предположили, что микроскопический поток воды возникает от столкновения друг с другом и «взрыва» заключенных в капле пузырьков воздуха, когда капля деформируется в результате удара о поверхность. А при увеличении скорости падения капли пузырькам воздуха в капле удержаться уже не удается, и «взрывов» уже не происходит.
Полученные результаты важны для понимания практически всех процессов, при которых происходит столкновение капель с поверхностью. Речь идет и о струйной печати, и о капельном орошении, а также об опрыскивании пестицидами в агрономии и применении аэрозолей в современном изобразительном искусстве.
Теперь давайте отправимся к химикам Принстонского университета, которые разработали новую технологию для быстрой печати удивительно тонких линий, позволяющую печатать линии в десять раз тоньше и на несколько порядков быстрее, чем обычно, что должно дать толчок развитию гибкой электроники и произвести революцию в технологии производства дисплеев.
В основе метода лежит известная технология получения электродинамических струй, при которой жидкость из сопла вытягивает сильное электрическое поле.
Особенность таких струй — их неустойчивость, из-за которой струя либо быстро разбивается на мелкие капельки, либо начинает извиваться, словно змея. Эти неустойчивости давно используют в различных технологических процессах. Например, режим «извивающейся змеи» используется, чтобы свивать волокна при плетении нитей. А режим мелких капель — для нанесения на поверхность ровного слоя краски.
Однако математически предсказать поведение струи долго не могли. Принстонские исследователи обратили внимание на то, что, когда струя начинает извиваться, ток, идущий по самой струе, заметно меньше полного тока в цепи. В природе, как известно, ничто не исчезает. Оставалось предположить, что воздух вокруг струи ионизируется, и часть тока течет по окружающей струю плазме, заставляя струю извиваться.
Эта гипотеза позволила развить теорию электродинамических струй и найти параметры, при которых струи устойчивы, сообщает журнал Physical Review Letters.
Причем теория блестяще подтвердилась на практике. В ходе эксперимента удалось получить струи толщиной в 100 нанометров и длиной до 8 миллиметров. Интересно, что получается такая струйка из сопла диаметром в полмиллиметра (то есть сопло в 5000 раз толще струйки!). Это, в свою очередь, позволяет избежать засорения сопловых отверстий и довести скорость печати линий до нескольких метров в минуту. Раньше линии такой толщины можно было получать только травлением или электронным лучом и не быстрее, чем примерно микрон в минуту.
Высокоскоростная струйная печать позволит создавать большие электронные схемы на гибкой основе, широкоформатные дисплеи, трехмерные решетки для фотонных кристаллов и многое другое, уверяют разработчики, уже запатентовавшие свою технологию.
И это еще не все об исследованиях, связанных с водяными каплями. Вероятно, в ближайшем будущем мы узнаем еще немало сенсационного об этой, казалось бы, заурядной жидкости — воде.
Публикацию подготовил С. СЛАВИН
У СОРОКИ НА ХВОСТЕ