Метод имеет только один, но весьма существенный недостаток, на который еще в 1951 году обратил внимание Б. В. Кукаркин. Представьте, что мы наблюдаем движение Солнца с какой-нибудь из ближайших звезд. Притяжение Юпитера и Сатурна (воздействие остальных планет ничтожно мало) отклоняет Солнце от прямолинейного пути. Один раз в 59 лет, когда Юпитер и Сатурн находятся одновременно по одну сторону от Солнца, эти отклонения становятся наибольшими. Изучая движение Солнца, например, с Альфа Центавра, мы придем к выводу, что вокруг Солнца с периодом в 59 лет обращается крупная планета или даже небольшая темная звезда, масса которой равна сумме масс Юпитера и Сатурна. Таким образом, динамический метод "близорук" и, вероятно, весьма часто фиксирует совместное воздействие многих планет на звезды, а отсюда - завышенные массы тел.
К чему это может привести, видно на примере знаменитой Летящей звезды Барнарда (Проксимы Змееносца). Она прославилась не яркостью, а своим удивительно быстрым движением - звезда перемещается за год по нашему небу на 10,61''. До нее 5,9 световых лет. Открыл ее американский астроном Эдвард Эмерсон Барнард при сравнении фотографий Млечного Пути, сделанных в 1894 и 1916 годах.
Другой американский астроном, Ван де Камп, долгие годы изучал фотоснимки Летящей. Оказалось, что эта звезда летит по волнообразной траектории, отклоняемая чем-то невидимым. Но чем?
Масса, воздействующая на Летящую звезду, равна примерно 0,0016 солнечной с периодом обращения 25 лет. Это почти две массы Юпитера, по сравнению с нашей Землей - чудовищный объем материи. Жизнь, по крайней мере в формах, близких к земным, на таком теле искать бесполезно. Но не принимаем ли мы опять совместное действие нескольких планет за одно тело?
В 1974 году после особо тщательного анализа движений Летящей звезды ученые пришли к выводу, что на нее воздействует по меньшей мере две планеты, одна из которых тяжелее Юпитера, другая - значительно легче. Некоторые ученые считают, что на нее воздействует еще и третья планета, обращающаяся вокруг Летящей за семь лет. А где есть тяжелые планеты-гиганты, там логично предположить и наличие небольших планет типа Земли, как в нашей Солнечной системе.
Список звезд, имеющих планетные системы или, по крайней мере планетоподобные спутники, начал стремительно расширяться. Это Эпсилон Эридана, 61 Лебедя А, Цинциннати 18,2354, Лаланда 21185*, ВD +43о4305 А, Гамма Цефея, 70 Девы, 47 Большой Медведицы, Эпсилон Андромеды, Тау Волопаса, 51 Пегаса, Rho Рака, под сомнением Крюгера 60 А и 70 Змееносца** (2)
Увы, динамический метод пригоден лишь для близких звезд - ничтожные отклонения в движениях далеких звезд неуловимы. Однако здесь на помощь приходят другие методы.
Астрофизики уже давно изучают пульсары - нейтронные звезды, которы, быстро вращаясь, как бы "мигают" нам радиолучом, посылая нам одинаковые импульсы через доли секунды. И если взять запись этих радиоимпульсов от одного пульсара за большой промежуток времени, скажем, несколько лет, то в их колебаниях можно усмотреть влияние тяготения невидимого спутника - планеты.
Первая планета близ пульсара была не столько открыта, сколько вычислена в 1992 году, о чем сообщил журнал "Nature". Как полагают, она вращается вокруг пульсара PSR 1257+12.
Об открытии второй такой планеты у другого пульсара рассказала отечественный астрофизик Т. В. Шабанова в выступлении на Научной сессии Отделения общей физики и астрономии РАН в марте 1994 года. Оказывается, пульсар PSR 0329+54 уже давно привлекает внимание ученых. В разных странах его радиоимпульсы регулярно записывались, начиная с 1968 года. Наша исследовательница впервые занялась подозрительным пульсаром в 1979 году и получила непрерывный ряд данных вплоть до января 1994 года.
Когда все данные, свои и опубликованные зарубежные, она наложила на одну кривую, то получился объединенный массив наблюдений из 790 наблюдений за 25 лет. Математическая обработка данных позволила определить конкретные параметры далекой планеты. Она всего лишь вдвое превышает по массе Землю, обращаясь вокруг пульсара за 16,8 лет. И это еще не все. Есть основания подозревать, что гораздо ближе к пульсару вращается еще одна планета, совершая оборот примерно за три наших года. Вырисовываются контуры еще одной планетной системы...
Современная теория образования планет предполагает, что они образуются из околозвездных пылевых оболочек. Американские ученые нашли по меньшей мере шесть звезд, окруженных такими оболочками - Росс 128, Вега, Бета Живописца, Тау Кита и другие*.
Крайне интересное решение вопроса о наличии у звезд планетных систем предложил астроном Отто Струве. Как известно, Солнце и похожие на него звезды-карлики обладают весьма медленным осевым вращением. А массивные горячие белые звезды, массы которых в десятки раз больше солнечной, вращаются в сотни раз быстрее. Менее горячие и массивные звезды вращаются медленнее, причем это убывание скорости происходит непрерывно и постепенно вплоть до желтовато-белых звезд с температурой поверхности около 8000о С.
А дальше - резкий скачок. У звезд, похожих на Солнце (температура поверхности 6000о С) и более холодных скорость вращения, судя по их спектру, становится небольшой - порядка нескольких километров в секунду. При этом (что очень важно) такие характеристики звезд, как температура поверхности, светимость и масса продолжают меняться медленно и постепенно. Что же тогда вызвало резкое замедление скорости вращения?
Логично предположить, что причина скачка скоростей - образование планет. Это предположение подкрепляется любопытным расчетом: если бы все планеты Солнечной системы упали на Солнце, то оно, по законам механики, стало бы вращаться так же быстро, как горячие и массивные звезды. Тогда получается, что только в нашей Галактике есть по крайней мере несколько миллиардов планетных систем... Значит, планетные системы - не редкость, а закономерно возникающие и весьма многочисленные образования во Вселенной.
"Если вы взглянете на другие звезды, то увидите массу свидетельств в пользу того, что там есть достаточно материала, достаточно времени и все условия для того, чтобы образовать планетные системы... Может быть, половина звезд Галактики имеет планеты" сказал в интервью газете "Nando Times" астроном Стивен Беквиц из Института Астрономии имени Макса Планка в Гейдельберге. Впрочем, Дэвид Блэк, директор Института исследования Луны и планет в Хьюстоне, сказал, что не будет удивлен, если планеты окажутся не у 50%, а у 10% звезд. Но и это - 15 миллиардов планетных систем! (3)
Многие ученые пробовали рассчитать, хотя бы приблизительно, количество планет в Галактике, на которых человек смог бы жить без специальных защитных мер - куполов, скафандров и прочих приспособлений. Результат их расчетов колеблется между 1 и 700 миллионами "похожих" планет. А ведь есть и другие галактики... Подсчитано также, что вероятность встретить пригодную для жизни человека планету в окрестностях какой-либо из 100 наиболее близких к Солнцу звезд равна 43%!
Не обошлось, конечно же, без скептических замечаний сторонников нашего одиночества во Вселенной. И. С. Шкловский заявил, что скачок скоростей звезд "почти наверняка" связан с потерей вещества с поверхности звезды, "а также явлением кратности звезд" (4) Как хотите, но я не вижу здесь никаких противоречий. Возможно, не во всех случаях околозвездная пылевая оболочка была "притянута" звездой при прлете через пыле-газовые межзвездные облака. Может быть, во многих случаях звезда как бы сбрасывает часть вещества, которое далеко не улетает и служит основой для образования планет. Что же касается двойных и кратных звезд, то еще в начале 70-х годов Ф. А. Цицин рассчитал весьма изрядную вероятность простых стабильных орбит планет, не выходящих из благоприятных температурных зон в системах таких звезд.
Н. С. Кардашев резонно заметил, что "ведущей тенденцией в развитии концепции множественности миров за последнее столетие является систематическое увеличение числа астрономических объектов, рассматривающихся как возможное пристанище жизни". Кто знает, может, жизнь смогла приспособиться и к нестабильным орбитам планет в системах двойных и кратных звезд, попеременно испытывающих то испепеляющую жару, то страшный холод...