Есть сведения, что аналогичные сабли были преподнесены русскому полководцу М. Б. Барклаю-де-Толли и командующим союзными войсками Артуру Уэлсли Веллингтону и Герберту Лебрехту Блюхеру. Несмотря на высокую стоимость, сабля представляет собой всего лишь неплохой образец «дамаскированной» стали. На ее поверхности выгравирован рисунок, похожий на булатный узор. Подобных образцов в музеях можно найти немало, гораздо больше, чем настоящих сварочных булатов.
В нашей стране многие секреты сварочного булата стали известны благодаря работам грузинского ученого-этнографа К. К. Чолокашвили, который расшифровал ряд способов его производства. Найденный рецепт изготовления грузинского булата был им передан в Институт металлургии Академии наук Грузинской ССР, где был тщательно изучен. В результате в одном из цехов Руставского металлургического завода под руководством академика АН Грузинской ССР Ф. Тавадзе в современных условиях были получены опытные образцы сварочного булата, достаточно хорошо повторяющие узоры и свойства музейных экспонатов.
Как мы уже неоднократно замечали, в сварочном булате чередуются участки пластичного мягкого (низкоуглеродистого) железа и сравнительно твердой (углеродистой) стали — такие клинки обладали гораздо более высокой упругостью и вязкостью по сравнению с клинками из обычной углеродистой стали. А вот почему именно сварочный булат отличался высокой прочностью и дамасские сабли были значительно тверже и крепче других стальных сабель, долгое время оставалось загадкой. Лишь современная наука о металлах смогла это объяснить. Но прежде чем привести это объяснение, сделаем небольшую экскурсию в физику металлов.
В 1784 году монах Р. Гаюи выдвинул гипотезу, что кристаллы состоят из совершенно одинаковых «кирпичиков» постоянной формы.
Через 130 лет с помощью рентгеноструктурного анализа было выяснено, что металлы имеют такое же кристаллическое строение, как и минералы. Атомы металлов располагаются в пространстве определенным образом, образуя кристаллическую решетку. Кристаллическая решетка складывается из элементарных кристаллических ячеек. Кристаллической ячейкой удобно изображать расположение атомов в кристалле. Например, в кубической объемно-центрированной решетке 8 атомов расположены в каждой из вершин куба и один — на пересечении его пространственных диагоналей. В идеальной кристаллической решетке все узлы заполнены атомами, вернее, ионами, а в междоузлиях расположен только электронный газ.
Прочность металлов определяется их атомно-кристаллической структурой. В 1926 году выдающийся советский физик Я. И. Френкель подсчитал, что прочность реальных металлов во много раз меньше теоретической. В чем же дело? Физики немало лет ломали голову над этим вопросом. Оказалось, что реальные металлические изделия состоят из большого числа кристаллов, которые имеют разную ориентацию кристаллической решетки, В таком поликристаллическом агрегате кристаллы принимают неправильную форму — их называют зернами или кристаллитами. Кусок металла, представляющий собой один кристалл, называют монокристаллом.
В отличие от строения монокристалла строение кристаллитов несовершенно, в частности из-за наличия незанятых мест в узлах кристаллической решетки — атомных «дырок», называемых вакансиями. Недостатком кристаллитов являются и дислокации. Дислокацией, буквально — смещением, в геологии называют нарушение первоначального залегания пластов земной коры, в результате которых образуется складка или сдвиг. В кристаллической решетке дислокация — это также смещение или сдвиг, приводящий к образованию лишнего ряда атомов. Дислокация образует в кристаллической решетке «лишнюю» неполную плоскость или полуплоскость, которая получила название экстраплоскости.
Многочисленные экстраплоскости не проходят через все сечение кристалла, они обрываются внутри него. Экстраплоскость образует линейный дефект решетки — краевую дислокацию. Краевая дислокация может простираться в длину на многие тысячи ячеек решетки, может быть прямой, а может, как нитка, выгибаться в ту или другую сторону. В пределе она может закрутиться в спираль, образуя винтовую дислокацию. Вокруг дислокации возникает зона упругого искажения решетки, вызванная отталкиванием дислоцированных (внедренных в междоузлия) атомов экстраплоскости.
Помните, дислокация — это «складка»? Теперь представьте себе, что нужно передвинуть по полу ковер. Тащить его за край довольно тяжело. Сделайте на ковре складку, и вы значительно облегчите его передвижение. Если ковер передвигать по полу постепенно, по мере волнообразного передвижения складки, то для его движения потребуется совсем немного усилий. В металле дислокации играют роль примерно таких же «складок». Вследствие искажения решетки в районе дислокации последняя под действием небольших напряжений легко смещается, и дислоцированные атомы занимают положенное им место в узлах кристаллической решетки. Но вслед за ними смещается соседняя плоскость атомов, занимая место дислоцированных, то есть превращаясь в экстраплоскость и вновь образуя краевую дислокацию.
Что же заставляет дислокацию перемещаться? Оказывается, ее «толкают» атомы, расположенные непосредственно за ней. У них в результате искажения решетки появляется избыточная энергия, и чтобы избавиться от нее и занять новое стабильное положение, они сталкивают дислокацию на новое место. Поскольку дислокация испытывает давление с обеих сторон, суммарное воздействие на нее равно нулю. Поэтому «толкачи» начинают работать лишь тогда, когда они сами испытывают давление от внешних сил.
Таким образом, дислокации могут сравнительно легко перемещаться под действием небольших напряжений. Это значит, что реальные металлы и сплавы деформируются постепенно за счет небольших смещений атомных слоев в области дислокации. Говорят, что движение дислокации напоминает движение гусеницы. При движении лишь у ограниченного количества атомов нарушаются связи.
Механизм деформации идеального кристалла состоит в сдвиге одних атомных плоскостей относительно других. Для такого сдвига требуются значительные усилия — этим и объясняется высокая теоретическая прочность монокристаллов по сравнению с поликристаллами реальных металлов и сплавов.
Пока под влиянием приложенной к металлу силы движутся дислокации, сопротивление металла деформации невелико. Раз так, то и прочность металла небольшая. А если движение дислокации затруднено, если поставленный им заслон вообще мешает им перемещаться? Скажется ли это на прочности металла? Да, конечно, металл в этом случае будет тяжелее поддаваться деформации, и прочность его возрастет. Следовательно, для повышении прочности металла необходимо либо устранить дислокации вообще, либо повысить сопротивление их перемещению.
При деформации дислокации движутся подобно нитке — они способны изгибаться, цепляться за препятствия, образовывать клубки и даже уничтожать друг друга. В клубках плотность дислокации достигает значительной величины, им становится очень трудно перемещаться. Значит, образование клубков дислокации приводит к упрочнению металла или сплава.
Но где взять ту преграду, которая остановит движение дислокации? Оказывается, такое препятствие можно найти, и даже не одно. Существует несколько способов торможения дислокации. Один из них — уменьшение размеров зерен. Границы зерна являются препятствиями для перемещения дислокации. Добавление в кристаллическую решетку атомов других элементов также приводит к торможению дислокации. Чужеродные атомы окружают дефекты, блокируют их, не дают возможности дислокациям перемещаться. Теперь хорошо известно, что легированне стали хромом, вольфрамом, марганцем, ванадием и другими легирующими элементами значительно повышает ее прочность. Прочность легированной стали намного выше прочности булата.