Предположим, мы хотим получить белковую молекулу из ста аминокислот в результате хаотичного, самопроизвольного возникновения в «первобытном бульоне». Сколько времени для этого необходимо? Как известно, природные белки состоят из двадцати аминокислот. Вероятность того, что мы случайно отберем из двадцати аминокислот строго определенную — один шанс из двадцати (или 0,05). Если мы хотим получить белок, аналогичный природному, то все аминокислоты, входящие в него, должны быть L-изомерами. Вероятность того, что отобранная аминокислота будет именно L-изомером — один шанс из двух (0,5). Присоединение аминокислот к растущей пептидной цепочке возможно с двух ее концов, следовательно, вероятность присоединения аминокислоты с «нужного» конца — один шанс из двух (0,5).
Таким образом, для того, чтобы найти вероятность появления одной определенной L-изомерной формы аминокислоты в нужном месте белка, нам необходимо просто перемножить все найденные нами три вероятности. Искомое число будет один шанс из восьмидесяти (0,0125). Вероятность того, что две L-формы конкретных аминокислот расположатся в нужной последовательности в белке один шанс из шести тысяч четырехсот (или 0,000156; чтобы получить эту величину необходимо умножить 0,0125 на 0.0125). Для ста аминокислот вероятность их случайного попадания в строго определенное место белка составляет один шанс из 4,9x10 191.
Оценочные расчеты, выполненные с целью определения примерного количества атомов в наблюдаемой части Вселенной, показывают, что вероятность найти конкретный атом методом проб и ошибок среди всех атомов Вселенной намного выше вероятности спонтанного возникновения белка из ста аминокислот, идентичного натуральному (образующемуся в живом организме).
Дело еще больше усложняется, если мы попытаемся обсудить вероятность самопроизвольного возникновения нуклеиновых кислот (ДНК и РНК).
В 1953 г. (это тот же самый год, когда были обнародованы результаты экспериментов Стенли Миллера) Джим Уотсон и Фрэнсис Крик установили, что ДНК (молекула, носитель информации о живом организме) образует в живых системах двойную спираль, в которой нуклеотиды располагаются друг напротив друга. Было подсчитано, что вероятность того, что самопроизвольно образуется только одна пара нуклеотидов в нуклеиновой кислоте, с учетом всех возможных сочетаний атомов, входящих в их состав, составляет 10-87. Число нуклеотидных пар в ДНК человека превышает 3 миллиарда, а для некоторых цветковых растений может достигать десятков миллиардов. Понятно, что вероятность случайного возникновения строго определенной последовательности ДНК из миллиарда конкретных нуклеотидов несуразно мала. (Для сравнения, можно напомнить, что в 4,5 миллиардах лет, (столько обычно отводят на эволюцию на нашей — планете), всего 1025 секунд).
Заметим, что условия, которые должны были бы сопутствовать появлению в «первобытном бульоне» сахаров (сахара рибоза и дезоксирибоза входят в состав нуклеиновых кислот) и аминокислот (компонентов белков) различны. Аминокислоты образуются в кислой среде, которая непригодна для образования сахаров.
Переход от простого набора биополимеров к функционирующему живому организму, пускай даже очень простому, представляется еще более сложной проблемой, чем спонтанный синтез белков и нуклеиновых кислот. Об этом говорят биохимики-эволюционисты Дэвид Грин и Роберт Гольдберг: «Переход от макромолекул к клетке является скачком фантастических масштабов, который лежит за пределами поддающейся проверке гипотезы. В этой области все является предположением. Доступные факты не дают основания постулировать, что на этой планете возникли клетки».
Гарольд Моровиц подсчитал, что вероятность самоорганизации биополимеров с образованием кишечной палочки (Escherichia coli) равна одному шансу из 10-110, для микоплазмы один шанс из 10-450
Компоненты живой клетки, функционируя как единое целое, находятся в сложном взаимодействии друг с другом. В клетках белковые молекулы образуются в результате реакций матричного синтеза, которые протекают в соответствии с информацией, заложенной в молекуле ДНК. В этом сложном процессе может участвовать несколько сот специфических белков, и отсутствие одного из них делает матричный синтез просто невозможным. В свою очередь, белки участвуют в процессах биосинтеза нуклеиновых кислот. Таким образом, для синтеза белков в клетках нужны нуклеиновые кислоты, а для биосинтеза нуклеиновых кислот — белки. Как разрешить это противоречие?