Выбрать главу

Так как протопланетные диски нагреваются излучением звезды, их структуру и свойства лучше изучать в инфракрасном диапазоне – современные телескопы позволяют проводить такие наблюдения. Но современные телескопы позволяют изучать небо в различных диапазонах электромагнитного излучения. На фотографиях, полученных с помощью инфракрасных и субмиллиметровых космических и наземных телескопов, межзвездные облака и протопланетные диски предстают перед наблюдателем во всей красе. Такие телескопы, как уже упоминавшаяся космическая обсерватория «Гершель», спутник IRAS, космический телескоп «Спитцер», система телескопов ALMA, расположенная в высокогорной пустыне в Чили, телескоп Джеймса Клерка Максвелла и некоторые другие, позволили в прямом смысле заглянуть внутрь протопланетных дисков, увидеть их структуру.

Межзвездные облака, в которых идет процесс интенсивного звездообразования, часто поэтически называют «звездные колыбели». Ближайшее к нам место, где прямо сейчас рождаются звезды, – туманность Тельца – располагается на расстоянии 140 св. лет от наc; интенсивное звездообразование также идет в туманности Ориона и многих других. Как правило, звезды в газовых облаках рождаются группами: чтобы это представить, вообразите себе пчелиный рой, застывший в воздухе, замените каждую пчелу на звезду и поместите этот «рой» в огромное газовое облако.

В молекулярных облаках астрономы находят только очень молодые звезды и почти не находят те, что старше 10 миллионов лет. Это происходит потому, что после рождения «рой» звезд выталкивается приливными силами из своей «колыбели» и начинает самостоятельное движение по галактике, а связанный с ним газ быстро рассеивается. На своем пути звезды, выброшенные из звездных колыбелей, взаимодействуют с десятками других звезд, которые, в свою очередь, тоже находятся в движении. Эти взаимодействия приводят к тому, что постепенно «рой» распадается. Сегодня, когда астрономы наблюдают звезды, они редко могут определить место рождения звезды. Скорее всего, мы никогда не узнаем, где родилось наше Солнце.

Вернемся к новорожденной звезде. Наблюдения подтверждают трехкомпонентную структуру звездообразования: это аккрецирующий со всех сторон на звезду газ, протопланетный диск и… джеты – струи вещества, не поглощенные звездой, «бьющие» из полюсов новой звезды. Их формируют огромные магнитные поля, сопровождающие рождение звезды. По всей видимости, они играют одну из ключевых ролей в звездообразовании, унося вместе с веществом значительную часть момента импульса, позволяя гравитации победить центробежные силы и обеспечить необходимую плотность вещества в звезде для того, чтобы запустить процессы ядерного синтеза.

Что касается самого протопланетного диска, то, очевидно, он состоит из газа, оставшегося от туманности или взрыва сверхновой, и микроскопических (максимум в несколько миллиметров) частичек пыли. Причем масса газа примерно в сто раз превышает массу всей пыли в диске. Протопланетные диски, как правило, обладают радиальной симметрией, поэтому их свойства, такие как температура и поверхностная плотность, зависят только от расстояния до звезды – чем ближе к звезде, тем плотность больше, а температура выше. Молодые, только образовавшиеся протопланетные диски начинаются в непосредственной близости от звезды и простираются на десятки, а иногда и сотни астрономических единиц от нее.

Внутри дисков происходят довольно сложные и до сих пор вызывающие много вопросов процессы. Близкие друг к другу газопылевые потоки, аккрецирующие на звезду, внутри диска взаимодействуют между собой: притягиваются, трутся друг о друга, обмениваются импульсом и веществом, а их скорости уравниваются. Постепенно температура диска падает, наиболее тугоплавкие элементы конденсируются в зерна, свободно плавающие в газе. Постепенно зерна, сталкиваясь друг с другом, вырастают до сантиметровых размеров и оседают в центральной плоскости диска.

Рисунок 7. Протопланетный диск HL Тельца. Изображение получено в миллиметровом диапазоне волн с помощью системы телескопов ALMA

Процесс постепенного роста частиц до планет размером с Землю можно условно разбить на три этапа. В рамках первого этапа частицы нанометрового и микрометрового размеров собираются вместе, прилипают друг к другу и образуют пористые агломераты. Такой рост имеет предел. Лабораторные эксперименты[18] показывают, что пылинки в процессе взаимных ударов в протопланетном облаке могут вырасти только до сантиметровых размеров, сохраняя структуру благодаря электростатическим силам14. Однако дальше начинаются трудности. При соударениях сантиметровые частицы разрушаются, а не слипаются, и их дальнейший рост, преодоление размера в один метр, оказывается невозможным. Эта проблема ввиду множества неудовлетворительных попыток ее решить даже получила название – «проблема метрового барьера»[19].

вернуться

18

Да, астрофизический лабораторный эксперимент наконец-то стал реальностью. Остается только мечтать, что однажды реальностью станет и космологический лабораторный эксперимент.

вернуться

19

Метровый барьер – не единственное препятствие для твердого вещества в протопланетном диске, которое мешает ему вырасти до размеров планеты. Астрофизики сегодня говорят о четырех барьерах, сопровождающих аккреционный рост планет, преодоление каждого из которых нуждается в объяснении.