Другой видный советский биохимик, академик Ш. Спирин, отметил, что во многих лабораториях удалось получить кристаллические препараты транспортной РНК, пригодные для рентгеноструктурного анализа. "Модели-то можно придумать, — сказал тогда А. Спирин, — а вот доказать, что та или иная модель соответствует действительности, может только рентгеноструктурный анализ". К моменту работы симпозиума в некоторых лабораториях удалось закристаллизовать около пятнадцати транспортных РНК, многие из которых были вполне готовы для рентгеноструктурного анализа.
Прогнозы оказались правильными. Ранней весной 1973 года группа ученых Массачусетского технологического института в Америке опубликовала работу, в которой сообщалось: методом рентгеноструктурного анализа определено строение фрагмента двойной спирали РНК. Он состоял из двух пар азотистых оснований гуанин-цитозин: Г-Ц/Ц-Г Авторам удалось закристаллизовать динуклеотид Г-Ц. И вот рентгенограммы кристаллов этого динуклеотида позволили прямым путем "увидеть" повторяющийся элемент двойной спирали.
Геометрия любой части двойной спирали практически одна и та же. А это значит, что представления о двухтяжевой модели РНК оказываются правильными. Чрезвычайно любопытно, что, по данным этих ученых, транспортная РНК представляет собой спирально сплетенную молекулу, причем сплетенную в форме Г-образного крючка. Размер восемь миллионных долей миллиметра.
А почему в природе существует столько рибонуклеиновых кислот? Не одна, не пять, не десять, а значительно больше?
Чтобы ответить на эти вопросы, надо рассказать о биологической роли нуклеиновых кислот. Открытие, которое произвело революцию в биологии в XX веке, фактически состоялось во второй половине прошлого века. Но биологическая значимость нуклеиновых кислот оставалась неясной практически до самого последнего времени.
Шли сороковые годы нашего столетия. И вот фактически одновременно в нескольких странах ученые обнаружили интересное явление. В Советском Союзе Б. Кедровский, в Бельгии — Д. Браше, в Швеции — Т. Касперсон заметили, что в тех местах ткани, где синтез белка идет более интенсивно, и нуклеиновых кислот больше. Сегодня участие нуклеиновых кислот в биосинтезе белка неопровержимо доказано.
Как известно, строительным материалом для биосинтеза белка служат аминокислоты. Но для того чтобы строительный матерлал можно было использовать, аминокислоты должны быть активированы. Этот процесс идет при обязательном участии аденозинтрифосфорной кислоты (АТФ), богатого свободной энергией соединения. Затем активированная аминокислота реагирует с транспортной РНК (т-РНК). Каждая индивидуальная аминокислота имеет персональную т-РНК. Из этого следует, что т-РНК должно быть никак не меньше, чем самих аминокислот. т-РНК транспортирует аминокислоту к местам синтеза белковой молекулы. Синтез белка происходит в крошечных по размеру специальных клеточных образованиях, которые называются рибосомами. Любопытно, что сами рибосомы состоят на 55-65 процентов из РНК и на 35-45 из белка. Рибосомы вполне можно уподобить настоящему конвейеру по сборке белковых молекул.
Если в молекуле ДНК "записана" наследственная информация, то при синтезе белка эта информация должна передаваться с помощью какого-то посредника. В 1961 году настоящую научную сенсацию произвело сообщение Ф. Жакоба и Ж. Моно, которые объявили о существовании такого "посредника". Им оказалась молекула РНК, которая, в свою очередь, синтезировалась на молекуле ДНК. В этом случае молекула ДНК служила настоящей матрицей, на которой строилась молекула рибонуклеиновой кислоты.
Эта РНК — посредник — получила название информационной РНК, или сокращенно м-РНК. "М" — начальная буква английского слова "месиндже" — "посыльный". Функция м-РНК состоит в том, чтобы извлекать информацию оттуда, где она хранится, и доставлять туда, где она используется.
М-РНК характеризуется высокой степенью метаболизма, или, иначе, высокой подвижностью. Она способна образовать с ДНК молекулярные комплексы, а ее первичная структура соответствует структуре определенных участков ДНК. Отсюда следует важный вывод: истинной матрицей для синтеза белка служит посредник, который переносит информацию от ДНК к рибосоме.
При синтезе белка из аминокислот сначала образуются полипептидные цепи. Биохимики полагают, что синтез полипептидной цепи происходит на рибосоме. Но как, пока никто сказать точно не может.