Выбрать главу

Сложность и многообразие форм объясняется необходимостью увеличения поверхности мембраны. Ведь в ней располагаются многочисленные ферменты, имеющие самое непосредственное отношение к образованию энергии. Естественно, что для размещения большого числа "жильцов" необходима и соответствующая "жилплощадь". Пространство между двумя мембранами заполнено студнеобразной жидкостью, или, как говорят биологи, матриксом, приблизительно на 50 процентов состоящим из белка. Здесь видны какие-то образования, гранулы. Какую роль они выполняют, к сожалению, пока неизвестно.

Теперь остается рассмотреть молекулярное строение самой мембраны. Она чем-то напоминает сандвич: два ломтика хлеба, между которыми намазан слой масла. Сандвич, конечно, необычный, толщиной всего 50-60 ангстрем. Его наружные стенки — белковые молекулы, а внутреннее содержимое жировое... Биологи обычно называют жиры липидами. Строение мембран митохондрий в известном смысле универсально, так как по этому принципу построены многие другие полупроницаемые оболочки.

Поверхность мембран огромна. Площадь мембран митохондрий, которые содержатся в печени обыкновенной белой лабораторной крысы, составляет солидную величину — 40 квадратных метров! Если выделить все митохондрии из сердца этого неутомимого труженика и рассчитать поверхность их мембран, получим еще более впечатляющую величину — 250 квадратных метров! Ну а если ткань живого организма работает очень интенсивно, какова тогда поверхность мембран? В летательной мышце синей мясной мухи, например? Фантастически велика — 400 квадратных метров!

Нетрудно заметить в этом и определенную общебиологическую закономерность. Чем интенсивнее работа, которую должны совершать клетки, чем больше затраты энергии, тем больше и поверхность мембран. Это, в свою очередь, связано с необходимостью увеличить "площадь" для так называемых "ферментных ансамблей", тесно связанных между собой групп ускорителей химических реакций.

В последнее время возник вопрос о сферических частицах, сидящих на тонких ножках на внутренней поверхности мембран. Известный исследователь энергетических процессов в живой клетке Е. Рэкер и его сотрудники провели серию убедительных экспериментов.

В митохондриях, выделенных из сердца быка, содержится вещество, которое ученые назвали "фактор Ф1". Это белок с довольно-таки большим молекулярным весом. Если лишить митохондрии сердца быка фактора Ф1, то образования энергии в них не происходит. В электронный микроскоп в этом случае сферические частицы не видны. Когда к митохондриям вновь добавляют фактор Ф1 процессы образования энергии восстанавливаются. И удивительное дело — на электронных микрофотографиях снова видны крошечные сферические тельца.

Мы совершили нечто вроде путешествия внутрь митохондрий. Чтобы не попасть в положение человека, не увидевшего за деревьями леса, полезно рассмотреть митохондрии в живой клетке. Если эти наблюдения сопровождать специализированной микросъемкой, то можно увидеть интереснейшие вещи. Прокрутив кинофильм, можно заметить, что митохондрии "шевелятся" и перемещаются из одного места клетки в другое. Они способны набухать и сокращаться в объеме.

Изменение внешних условий, добавление химических веществ вызывают сжатие или набухание митохондрии. Они меняют форму и объем и при заболеваниях. Если лабораторных белых крыс заставить поголодать несколько дней, то митохондрии печени этих животных набухают, а число внутренних перегородок уменьшается. Если кормление возобновляется, митохондрии очень скоро приобретают прежний нормальный вид.

Форма митохондрий довольно-таки изменчива. Обычно они имеют вид нитей, у некоторых организмов — гранул. При определенных изменениях внешней среды митохондрии чем-то напоминают дубинку доисторического человека, а иногда очень смахивают на вполне современную теннисную ракетку. Пеструю картину можно наблюдать у рыб через несколько часов после кормления. Обычно нитевидные митохондрии принимают и форму пузырьков, и теннисных ракеток, и дубинок. Через двое суток после приема пищи картина снова меняется: большинство митохондрий опять имеет форму нитей.