Трение скольжения с увеличением скорости немного уменьшается, трение качения изменяется очень незначительно, а вот сопротивление воздуха, совершенно незаметное при медленном движении, становится грозной тормозящей силой, когда скорость возрастает. Воздух оказывается главным врагом быстрого движения. Поэтому кузовам автомобилей, тепловозам, палубным надстройкам пароходов придают округленную, обтекаемую форму, убирают все выступающие части, стараются сделать так, чтобы воздух мог их плавно обегать.
Когда строят гоночные машины и хотят добиться от них наивысшей скорости, то для кузова автомобиля заимствуют форму у рыбьего туловища, а на такую скоростную машину ставят двигатель мощностью несколько тысяч лошадиных сил.
Советский гоночный автомобиль «Звезда».
Но что бы ни делали изобретатели, как бы ни улучшали обтекаемость кузова, всегда за всяким движением, как тень, следуют силы трения и сопротивления среды. И если они даже не увеличиваются, остаются постоянными, все равно машина будет иметь предел скорости.
Объясняется это тем, что мощность машины — произведение силы тяги на ее скорость. Но раз движение равномерное — сила тяги целиком уходит на преодоление различных сил сопротивления.
Если добиться уменьшения этих сил, то при данной мощности машина сможет развить большую скорость.
А так как основным врагом движения при больших скоростях является сопротивление воздуха, то для борьбы с ним конструкторам и приходится так изощряться.
Форма авиационной бомбы.
Предметы, движущиеся в воде — рыбы, подводные лодки, самоходные мины — торпеды и проч., — встречают большое сопротивление своему движению со стороны воды.
С увеличением скорости силы сопротивления воды растут еще быстрее, чем в воздухе. Поэтому и значение обтекаемой формы возрастает. Достаточно взглянуть на форму тела щуки. Она должна гоняться за мелкими рыбешками, поэтому для нее важно, чтобы вода оказывала минимальное сопротивление ее движению.
Форму рыбы придают самоходным торпедам, которые должны быстро поражать неприятельские суда, не давая им возможности уклониться от удара.
Скорость падения
Дождевая капля, падая с высоты облаков под действием силы тяжести, сначала движется ускоренно, но сопротивление воздуха быстро уравновешивает силу тяжести, и весь остальной путь до земли капля совершает уже только по инерции с постоянной скоростью.
Эта скорость в зависимости от величины капли достигает только десяти-двадцати метров в секунду. И это очень хорошо! Если бы дождевые капли не встречали сопротивления воздуха, то их скорость падения достигала бы сотен метров в секунду. Такие капли убивали бы, как пули. Мелкие животные и птицы были бы истреблены, а людям пришлось бы вооружаться железными зонтиками и носить вместо плащей-дождевиков кольчуги и шлемы.
Но крупные тяжелые градины все же падают с большой скоростью. Они выбивают стекла в окнах, уничтожают посевы, вредят фруктовым садам.
При затяжном прыжке парашютист, выбросившись из самолета, первые восемь — десять секунд падает ускоренно. Примерно на десятой секунде падения возросшее сопротивление воздуха полностью уравновешивает силу тяжести.
Если парашютист не раскроет парашюта, то он будет падать с постоянной скоростью, примерно равной шестидесяти метрам в секунду. И, конечно, упав с такой огромной скоростью на землю, он неминуемо должен разбиться.
Раскрывшийся парашют благодаря своей форме зонтика встречает еще большее сопротивление воздуха и резко тормозит падение. Парашютист приземляется уже с безопасной скоростью.
Парашютист в воздухе.
Непростая задача
Помехи, которые встречает каждый движущийся предмет, ученые называют силами трения и силами сопротивления воздуха, воды — словом, той среды, в которой движется предмет. Но что такое эти силы? Откуда они берутся? Есть, например, сопротивление воздуха. Удивительное дело — воздух легок и подвижен, он никому и ничему не мешает, пока скорость движения мала, но стоит лишь ускорить движение, и сопротивление воздуха становится огромным и в высшей степени вредным врагом движения.