Выбрать главу

Однако описание физического пространства включает больше, чем простую идентификацию точек. Вам нужно также задать метрику, которая устанавливает масштаб измерений или физическое расстояние между двумя точками. Это соответствует меткам вдоль оси графика. Недостаточно знать, что расстояние между парой точек равно 17, пока вы не знаете, означает ли 17 на самом деле 17 сантиметров, 17 миль или 17 световых лет. Метрика требуется для того, чтобы объяснить, как измерять расстояние, и установить, какому расстоянию в описываемом нами с помощью графика мире соответствует расстояние между двумя точками на этом графике. Метрика дает измерительную линейку, которая определяет ваш выбор единиц, с тем чтобы установить масштаб, аналогично тому, как это делается на карте, когда полдюйма может соответствовать одной миле, или в метрической системе, которая задает метровый эталон, с которым мы все соглашаемся.

Но метрика определяет не только это. Она также говорит нам, изгибается ли, закручивается ли пространство, как поверхность воздушного шара, когда он при надувании превращается в сферу. Метрика содержит всю информацию о форме пространства. Метрика кривого пространства говорит как о расстояниях, так и об углах. Точно так же как сантиметр может соответствовать разным расстояниям, угол может описывать разные формы. Я подробнее расскажу об этом позднее, когда мы будем анализировать связь между кривым пространством и тяготением. Пока что скажем просто, что поверхность шара — совсем не то же самое, что и поверхность плоского листа бумаги. Треугольники на одной поверхности выглядят иначе, чем на другой, и разницу между этими двумерными пространствами можно увидеть в их метрике.

В процессе развития физики менялось и количество информации, спрятанной в метрике. Когда Эйнштейн развивал теорию относительности, он заметил, что четвертое измерение — время — неотделимо от трех измерений пространства. Время тоже нуждается в масштабе, так что Эйнштейн описал гравитацию с помощью метрики четырехмерного пространства-времени, добавив временное измерение к трем пространственным измерениям.

Дальнейшие исследования показали, что могут существовать дополнительные пространственные измерения. В этом случае истинная метрика пространства-времени будет включать более трех измерений пространства. Число измерений и метрика таких измерений определяет то, как мы описываем такое многомерное пространство. Но прежде чем мы исследуем нашу метрику и метрику многомерных пространств подробнее, подумаем еще немного о смысле термина «многомерное пространство».

Игровые пассажи сквозь дополнительные измерения

В книге Роальда Даля «Чарли и шоколадная фабрика» Вилли Вонка представлял посетителям свой «Вонкаватор». По его словам, «лифт может перемещаться только вверх и вниз, а Вонкаватор ходит и вбок, и наискосок, и назад, и вперед, и по сторонам квадрата, и любыми другими способами, которые вы только можете придумать…»[9] Действительно, у Вилли была машина, которая двигалась в любом направлении, до тех пор пока это направление было в тех трех измерениях, о которых мы знаем. Чудесная идея, которая будит воображение!

Однако на самом деле Вонкаватор не мог двигаться по любой дороге, «которую вы только можете придумать». Вилли Вонка проявил невнимательность, когда пренебрег пассажами в дополнительных измерениях. Эти измерения соответствуют совершенно другим направлениям. Их трудно описать, но, может быть, будет легче понять с помощью аналогии.

В 1884 году, для того чтобы объяснить понятие дополнительных измерений, английский математик Эдвин Эбботт написал книгу «Флатландия»[10]. Действие происходит в вымышленной двумерной вселенной по имени Флатландия, где живут двумерные существа (различных геометрических форм). Эбботт показывает, почему флатландцы, вся жизнь которых проходит в двух измерениях, например, на крышке стола, так же сбиты с толку идеей трех измерений, как люди нашего мира поставлены в тупик идеей четырех измерений.

Нам требуется напрячь воображение, чтобы представить более трех измерений, но в стране Флатландии уже три измерения находятся за пределами понимания. Каждый житель этой страны считает очевидным, что во вселенной есть не более двух различных измерений. Жители Флатландии столь же уверены в этом, как жители Земли уверены в наличии трех измерений.

вернуться

9

Roald Dahl. Charlie and the Chocolate Factory (рус. пер.: Даль P. Чарли и шоколадная фабрика. М.: Айрис-Пресс, 2009).

вернуться

10

Полное название: «Flatland: A Romance of Many Dimensions» (рус. пер.: Эбботт Э. Флатландия. СПб.: Амфора, 2001).