Выбрать главу

20. Хотя построение этой модели начинается с двух комплексных хиггсовских полей, в конечном итоге остается одна хиггсовская частица. Это происходит потому, что три остальных (действительных) поля становятся тремя дополнительными полями, требуемыми для того, чтобы превратить три безмассовых частицы с двумя физическими поляризациями в массивные частицы с тремя поляризациями. Три хиггсовских поля становятся третьими поляризациями трех тяжелых слабых калибровочных бозонов — двух W и Z. Четвертое оставшееся хиггсовское поле должно рождать истинные физические хиггсовские частицы. Если такая модель верна, эти частицы должны родиться на БАК.

21. Интенсивность каждого взаимодействия определяется численным коэффициентом (константой взаимодействия). Вычисления методом ренормализационной группы показывают, что значения этих констант логарифмически меняются с энергией.

22. В то время как симметрия слабого взаимодействия смешивает пары полей, а симметрия сильного взаимодействия смешивает три поля, группа симметрии теории Великого объединения Джорджи — Глэшоу смешивает пять полей. Некоторые преобразования симметрии, связанные с взаимодействиями ТВО, совпадают с преобразованиями слабой и сильной симметрии. Взаимодействия объединяются, так как одна единственная группа преобразований симметрии включает все преобразования симметрии Стандартной модели.

23. Эта связь с пространством и временем становится на самом деле более явной, если последовательно совершаются два преобразования суперсимметрии, сначала в одном порядке, а затем в другом, после чего один результат вычитается из другого. В этом случае фермионы остаются фермионами, а бозоны бозонами, но система совершает движение; окончательный результат преобразования в точности тот же, как и обычное преобразование пространства-времени. Коммутатор двух суперсимметричных преобразований, осуществляющий точно ту же операцию, как и единственное преобразование пространственно-временной симметрии, убедительно демонстрирует, что преобразования суперсимметрии должны быть связаны с симметриями, которые действуют на пространство и время и передвигают вещи.

24. Траектория частицы — это мировая линия, определяющая положение частицы как функцию времени. Траектория струны — это поверхность, описывающая положение всей струны в процессе ее движения во времени. Мировая поверхность представляет движение открытой струны, а мировая трубка представляет движение замкнутой струны.

Это показано на рис. М3, где иллюстрируется движение во времени и «более мягкие» взаимодействия струн.

25. Натяжение струны не всегда так велико, как можно подумать, зная значение планковского масштаба энергии. Оно зависит от того, насколько сильно взаимодействуют струны. Джо Ликкен и др. рассматривали возможность, что оно намного меньше, и в этом случае дополнительные частицы в теории струн могли бы быть намного легче.

26. На самом деле, согласно принципу дуальности, о котором шла речь в этой главе, даже пробные частицы, используемые для изучения данной версии теории струн, изменяют свой характер, когда связь становится сильной. Так, если Икар действительно был частью струнного мира, он также изменился бы.

27. Они могут простираться и в нулевом измерении, тогда они являются новыми типами частиц, которые называются D0-бранами, а также в одном измерении, и тогда возникают новые типы струн, называемые D1 — бранами.

28. Браны не обязательно взаимодействуют посредством обычных зарядов. Они взаимодействуют посредством многомерных обобщенных зарядов.

29. На самом деле симметрия вращает браны, переводя их друг в друга, но это находится за рамками технического уровня этой книги.

30. Обычно массы калибрино находятся в отношении 1:3:30, причем фотино является самой легкой частицей, следующими идут вино (хотя зино могут быть немного тяжелее или легче, чем вино), а глюино — самые тяжелые. В уединенных моделях это отношение равно 1:2:8, причем вино — самые легкие, фотино тяжелее, а глюино опять самые тяжелые.

31. Волновые функции мод Калуцы — Клейна — это те моды, которые возникают в обобщенном фурье-разложении многомерной волновой функции.

32. Это предполагает также, что в геометрии пространства-времени отсутствуют сингулярности, т. е. места, где пространство-время сжимается до нулевого размера.