Выбрать главу

33. Д. Кремадес, С. Франко, Л. Ибаньес, Ф. Марчесано, Р. Рабадан и А. Уранга предложили интересную альтернативу. Их идея состоит в том, что частицы закреплены не на индивидуальных бранах, а на пересечениях разных бран. Как и в случае разделенных параллельных бран, простирающиеся между бранами струны должны быть в общем случае тяжелыми. Но легкие или безмассовые частицы возникают от струн нулевой длины, которые в этом случае были бы прикреплены к области, где происходит пересечение бран.

34. Мы можем также показать это несколько иным способом с помощью более математизированного рассуждения. Когда имеются свернутые измерения, силовые линии, исходящие от массивного объекта, ведут себя на малых расстояниях согласно закону тяготения в пространстве с большим числом измерений, а на больших расстояниях — согласно четырехмерному закону тяготения. Единственный способ согласовать два закона силы и гладко переключиться от одного к другому состоит в том, чтобы заметить, что на расстояниях, примерно соответствующих размерам дополнительных измерений, силовые линии расходятся так, как будто существуют только четыре измерения, но с интенсивностью, подавленной за счет дополнительного объема свернутого пространства. За пределами размера дополнительных измерений гравитация ведет себя четырехмерно, но с интенсивностью, подавленной за счет размытия по объему дополнительных измерений.

Ньютоновский закон тяготения утверждает, что когда имеются три пространственных измерения, сила пропорциональна

1/MPl2 x 1/r2

Если существуют п дополнительных измерений, то закон силы примет вид

1/Mn+2 x 1/rn+2

где М определяет интенсивность тяготения в пространстве большего числа измерений, аналогично тому, как МPl определяет интенсивность четырехмерной гравитации. Заметим, что силовой закон в пространстве с дополнительными измерениями быстрее меняется как функция r, так как силовые линии расплываются по гиперсфере, поверхность которой имеет п + 2 измерения (в противоположность двумерной поверхности сферы, определяющей закон тяготения в трехмерном пространстве). Однако, когда объем дополнительных измерений конечен и п дополнительных измерений имеют размер R, закон силы примет вид

1/Mn+2 x 1/rn x1/r2

где r больше R, и силовые линии не могут более распространяться в дополнительных измерениях. Если осуществить отождествление МPl2 = Мп+2Rn, то это будет форма пространственно трехмерного закона силы. Так как Rп есть объем пространства дополнительных измерений, мы получаем, что интенсивность гравитационного взаимодействия уменьшается с объемом, или, что эквивалентно (так как интенсивность тяготения слабее, когда планковский масштаб энергии больше), планковский масштаб энергии большой, если объем большой.

35. Плоская метрика с тремя пространственными измерениями имеет вид

ds2 = dx2 + dy2 + dz2 — с2dt2.

Так как в ней нет никаких коэффициентов, зависящих от пространственных или временной переменных, измерения не зависят от того, где вы находитесь или в каком направлении смотрите. Можно сказать, что пространство-время полностью плоское. Все три пространственные координаты, а также временная координата (с точностью до знака минус, который всегда выделяет время) рассматриваются на равных основаниях. Это означает, что коэффициенты в слагаемых метрики полностью не зависят от положения во времени и пространстве.

36. Метрика закрученной геометрии имеет вид

ds2 = е -k|r| (dx2 + dy2 + dz2 — с2dt2) + dr2,

где г — координата пятого измерения. Это говорит нам о том, что при любом фиксированном положении в пятом измерении, соответствующем фиксированному значению г, пространство-время полностью плоское. Однако общий зависящий от г множитель указывает, что способ измерения размера меняется в соответствии с положением объекта в пятом измерении. Экспоненциальное уменьшение коэффициента, являющегося закручивающим конформным фактором, есть причина того, что функция вероятности гравитона экспоненциально уменьшается, а также того, почему мы должны менять масштаб массы, энергии и размера, чтобы получить единую четырехмерную эффективную теорию.