Вот какой ход рассуждений приводит нас к цели.
Вторая цифра частного есть, конечно, 0. Это следует из того, что к остатку от первого вычитания снесена не одна цифра, а две: ясно, что после снесения первой цифры составилось число, меньшее делителя; а в таких случаях очередная цифра частного 0.
По сходным основаниям заключаем, что четвертая цифра частного также 0.
Всматриваясь в расположение кружочков, замечаем, что двузначный делитель, будучи умножен на 8, дает число двузначное; когда же его умножают на первую (пока неизвестную) цифру частного, получается число из трех цифр. Значит, эта первая цифра частного больше 8; такой цифрой может быть только 9.
Сходным образом устанавливаем, что и последняя цифра частного — 9.
Теперь частное определилось: 90 809. Остается раскрыть смысл делителя. Делитель состоит, мы знаем, из двух цифр; кроме того, расположение кружков говорит о том, что это двузначное число при умножении на 8 дает также двузначное число; при умножении же на 9 оно дает произведение, состоящее уже из трех цифр. Что же это за число? Производим испытания, начиная с наименьшего двузначного числа — 10:
10 х 8 = 80,
10 х 9 = 90.
Число 10, как видим, не удовлетворяет требуемым условиям: оба произведения двузначные. Испытываем следующее двузначное число — 11:
11 х 8 = 88,
11 х 9 = 99.
Число 11 также, очевидно, не годится: оба произведения снова двузначные. Испытываем 12:
12 х 8 = 96,
12 х 9 = 108.
Число 12 удовлетворяет всем требованиям. Нет ли еще таких чисел? Испытаем 13:
13 х 8 = 104,
13 х 9 = 117.
Оба произведения трехзначные; следовательно, 13 не годится. Ясно, что неподходящими являются и все числа, большие чем 13.
Итак, единственный возможный делитель — 12. Зная делитель, частное и остаток, легко находим делимое и восстанавливаем весь случай деления.
Итак,
делимое = 90 809 х 12 + 1 = 1 089 709.
Случай деления:
Как видим, по двум известным цифрам нам удалось установить смысл 26 неизвестных цифр.
Перед нами ряд действий над числами, обозначенными предметами сервировки стола (см. рисунок). Вилка, ложка, нож, кувшинчик, тарелка — все это знаки, каждый из которых заменяет определенную цифру.
Глядя на эту группу ножей, вилок, посуды и т. п., попробуйте угадать: какие именно числа здесь обозначены?
Разгадайте, над какими числами производятся обозначенные здесь арифметические действия!
С первого взгляда задача кажется очень трудной: приходится разгадывать настоящие иероглифы[5], как сделал некогда француз Шампольон[6]. Но ваша задача гораздо легче. Вы ведь знаете, что числа здесь, хотя обозначены вилками, ножами, ложками и т. п., написаны по десятичной системе счисления, то есть вам известно, что тарелка, стоящая на втором месте (считая справа), есть цифра десятков, что предмет направо от нее — цифра единиц, а по левую сторону — цифра сотен. Кроме того, вы знаете, что расположение всех этих предметов имеет определенный смысл, который вытекает из сущности арифметических действий, производимых над обозначенными ими числами. Все это может значительно облегчить вам решение предложенной задачи.
Вот как можно доискаться значения расставленных здесь предметов. Рассматривая первые три ряда на нашем рисунке, вы видите, что "ложка", умноженная на "ложку", дает "нож". А из следующих рядов видно, что "нож" без "ложки" дает "ложку " или что "ложка прибавленная к "ложке", дает "нож". Какая же цифра дает одно и то же и при удвоении и при умножении сама на себя? Это может быть только 2, потому что 2 х 2 = 2 + 2. Таким образом узнаём, что "ложка" обозначает 2 и, следовательно, "нож" — 4.
Теперь идем дальше. Какая цифра обозначена "вилкой"? Попробуем разгадать это, присмотревшись к первым трем рядам, где "вилка" участвует в умножении, и к рядам III, IV и V, где та же "вилка" фигурирует в действии вычитания. Из группы вычитания вы видите, что, отнимая в разряде десятков "вилку" от "ложки", получаем в результате "вилку", то-есть при вычитании "вилки" из двойки получается "вилка". Это может быть в двух случаях: либо "вилка" обозначает 1, и тогда 2 – 1 = 1; либо же "вилка" обозначает 6, и тогда, вычитая 6 из 12 (единица высшего разряда занимается у "чашки"), получаем 6.
Что же выбрать: 1 или 6? Испытаем, годится ли 6 для "вилки" в других действиях. Обратите внимание на сложение V и VI рядов: "вилка" (то-есть 6), прибавленная к "чашке", дает "тарелку"; значит, "чашка" должна быть меньше 4 (потому что в рядах VII и VIII при вычитании "вилки" из "тарелки" получается "чашка"). Но "чашка" не может обозначаться двойкой, так как двойка обозначена уже "ложкой"; не может "чашка" быть и единицей — иначе вычитание IV ряда из III не могло бы дать трехзначного числа в V ряду. Не может, наконец, "чашка" обозначать и 3 — вот почему: если "чашку" принять за 3, то "бокальчик" (ряды IV и V) должен быть принят за единицу, потому что 1 + 1 = 2, то-есть "бокальчик", прибавленный к "бокальчику", дает "чашку", убавленную на единицу, которая была занята у него при вычитании в разряде десятков; "бокальчик" же не может быть принят за единицу, потому что тогда "тарелка" в VII ряду будет обозначать в одном случае цифру 5 ("бокальчик", сложенный с "ножом"), а в другом — цифру 9 ("вилка", прибавленная к "чашке"), чего быть не может. Значит, нельзя было "вилку" принимать за 6, а надо было принять ее за единицу.
5
Иероглиф — фигурный знак, обозначающий или целые понятия, или отдельные слоги и звуки речи.
6