Но вспомним: чем с больших космических расстояний приходит к нам то или иное излучение, тем более отдаленные в прошлое явления оно отражает. Поэтому есть веские основания предполагать, что возникновение рентгеновского фона (подобно возникновению реликтового излучения) связано с какими-то космологическими процессами, обусловившими формирование крупномасштабной структуры Вселенной.
В частности, существует гипотеза, согласно которой диффузное рентгеновское излучение порождается большим числом достаточно мощных дискретных рентгеновских источников, более или менее равномерно распределенных на небесной сфере и расположенных на очень больших расстояниях от Земли.
Но тогда возникает новый вопрос: что могут представлять собой эти источники, какова их природа? Галактики здесь не годятся. Они состоят из звезд, а изучение Солнца показало, что обычные, нормальные звезды являются весьма слабыми источниками рентгеновского излучения. Поэтому даже сотни миллиардов звезд, входящих в галактики, не могли бы обеспечить наблюдаемой интенсивности рентгеновского фона. Правда, в последние годы было установлено, что богатые скопления галактик являются источниками рентгеновского излучения, которое порождается механизмом тормозного излучения в горячей плазме, заполняющей объем таких скоплений. Однако, если учесть концентрацию скоплений галактик во Вселенной, то и этот источник оказывается явно недостаточным… Значит — не галактики.
Больше всего на роль дискретных рентгеновских источников, необходимых для генерирования диффузного рентгеновского фона, подходят квазары. Как показывают наблюдения, большинство квазаров являются мощными генераторами рентгеновского излучения. Достаточно сказать, что один квазар излучает в рентгеновском диапазоне в 1000 раз больше энергии, чем ее излучают в оптическом диапазоне все звезды нашей Галактики.
Квазары — весьма удаленные объекты. Некоторые из них расположены на расстояниях, намного превосходящих расстояния до самых далеких галактик. Поэтому, вероятно, большинство квазаров недоступно наблюдению современными средствами. Однако статистические подсчеты, основанные на распределении в пространстве известных нам квазаров, говорят о том, что значительная доля рентгеновского фона (а возможно, и весь этот фон) генерируется именно далекими квазарами, которые мы по отдельности наблюдать пока не можем.
В нейтринном «свете»
В этой главе мы познакомились с некоторыми результатами изучения Вселенной в различных диапазонах электромагнитных волн и могли убедиться в том, что освоение каждого нового канала космической информации вело к новым интереснейшим открытиям.
На фоне этих открытий достижения нейтринной астрофизики выглядят, быть может, намного скромнее. В сущности говоря, пока что получен только один реальный результат: поток солнечных нейтрино, которые должны рождаться в недрах нашего дневного светила в ходе термоядерных реакций, оказался значительно менее интенсивным, чем следует из теоретических соображений.
Результат, что и говорить, весьма интригующий и все еще ожидающий своего объяснения. В чем тут дело — в несовершенстве ли наших представлений о внутреннем строении Солнца или в том, что не учитываются некоторые свойства самих нейтрино, в частности, возможность того, что эти частицы обладают массой покоя, пока неясно.
Но изучение Солнца отнюдь не исчерпывает заманчивых возможностей нейтринной астрономии. Вообще, нормальные звезды являются источниками нейтрино низких энергий, и если учесть огромные расстояния до этих небесных тел, то регистрация потоков нейтрино от отдельных звезд представляется весьма трудноразрешимой в техническом отношении задачей: ведь эти частицы очень слабо взаимодействуют с веществом.
Правда, на заключительных этапах существования массивных звезд с массой в 20 — 30 масс Солнца при гравитационном коллапсе этих объектов, как показал Я, Б. Зельдович, могут возникать условия, при которых генерируются кратковременные нейтринные вспышки длительностью около 20 секунд. При этом испускаются нейтрино с энергией порядка 10–15 МэВ. Такие вспышки в принципе могут быть зарегистрированы.