Выбрать главу

Как велика разница? Сделаем расчет для поездов, идущих вдоль 60-й параллели со скоростью 72 км/ч, или 20 м/с. Точки земной поверхности на указанной параллели движутся вокруг оси со скоростью 230 м/с.

Рис. 12. Задача о двух поездах

Значит, поезд, идущий на восток, в направлении вращения Земли, обладает круговой скоростью в 230 + 20, т. е. 250 м/с, а идущий на запад, против движения Земли, — скоростью в 210 м/с. Центростремительное ускорение для первого составляет

так как радиус кругового пути на 60-й параллели равен 3200 км.

Для второго поезда оно составляет

Разница в величине центростремительного ускорения обоих поездов равна

Так как направление центростремительного ускорения составляет с направлением тяжести угол в 60°, то принимаем во внимание только соответствующую часть центростремительного ускорения, именно 0,6 см/с2 ∙ cos 60° = 0,3 см/с2.

Это составляет от ускорения тяжести 0,3/980, или около 0,0003.

Значит, поезд, идущий на восток, легче идущего в западном направлении на 0,0003 своего веса. Если поезд состоит, например, из паровоза и 45 груженых товарных вагонов, т. е. весит 3500 т, то разница в весе будет равняться

3500 × 0,0003 = 1,05 т = 1050 кг

Для крупного парохода водоизмещением в 20 000 т, движущегося со скоростью 35 км/ч (20 узлов), разница составляла бы 3 т. Уменьшение веса при движении судна на восток должно отразиться, между прочим, на показаниях ртутного барометра; при отмеченной скорости высота барометра должна быть на 0,00015 · 760, т. е. на 0,1 мм меньше на пароходе, идущем в восточном направлении, нежели на идущем к западу. Даже пешеход, шагающий по улице Петербурга с запада на восток, при скорости ходьбы 5 км/ч становится примерно на 1,5 г легче, чем идя с востока на запад.

Страны горизонта по карманным часам

Способ находить в солнечный день страны горизонта по карманным часам общеизвестен. Циферблат располагают так, чтобы часовая стрелка была направлена на Солнце. Угол между этой стрелкой и линией 6–12 делят пополам: равноделящая укажет тогда направление на юг. Нетрудно понять основание этого способа. Солнце в суточном движении обходит небо в 24 часа, часовая же стрелка обходит циферблат в 12 часов, т. е. описывает в одинаковое время вдвое бóльшую дугу. Значит, если в полдень часовая стрелка указывала на Солнце, то спустя некоторое время она опередит его, описав своим концом вдвое бóльшую дугу. Вот почему, разделив при указанном раньше положении циферблата пополам дугу, описанную стрелкой, мы должны найти то место неба, где находилось Солнце в полдень, т. е. направление на юг (рис. 13).

Рис. 13. Простой, но неточный прием определения стран света с помощью наручных или карманных часов

Испытание показывает, однако, что прием этот крайне неточен, греша на десятки градусов. Чтобы понять, почему так происходит, надо разобраться в рекомендуемом способе. Основная причина неточности та, что циферблат располагается параллельно плоскости горизонта, суточный же путь Солнца лежит в горизонтальной плоскости только на полюсе, на всех же других широтах он составляет с горизонтом разные углы — вплоть до прямого (на экваторе). Поэтому при ориентировании по карманным часам неизбежна бóльшая или меньшая погрешность.

Обратимся к чертежу (рис. 14,а). Пусть наблюдатель расположен в точке М; точка N — полюс мира; круг HASNRBQ — небесный меридиан — проходит через зенит наблюдателя и через полюс. На какой широте находится наблюдатель, легко определить; для этого достаточно измерить транспортиром высоту полюса над горизонтом NR; она равна широте места[4]. Глядя из М в направлении Н, наблюдатель имеет перед собою точку юга. Суточный путь Солнца на этом чертеже изобразится прямой линией, которая частью лежит над линией горизонта (дневной путь), частью же под нею (ночной путь). Прямая AQ изображает путь Солнца в дни равноденствий; как видим, дневной путь равен тогда ночному. SB — путь Солнца летом; он параллелен AQ,но бóльшая часть его лежит выше горизонта, и только незначительная часть (вспомним короткие летние ночи) находится под горизонтом. По этим кругам Солнце ежечасно проходит 24-ю долю их полной длины, т. е. 360°/24 = 15°. И все же через три часа после полудня Солнце не оказывается в юго-западной точке горизонта, как можно ожидать (15° ∙ 3 = 45°); причина расхождения та, что проекции равных дуг солнечного пути на плоскость горизонта не равны между собой.

вернуться

4

Почему это так, объяснено в моей книге «Занимательная геометрия», в главе «Геометрия Робинзонов».