Выбрать главу

Пусть между двумя пунктами A и B имеется многополосная объездная дорога, где практически не бывает пробок, однако из-за большого расстояния добираться по ней приходится в течение целых 40 минут. Поэтому было решено соединить эти два пункта короткой трассой, позволяющей добираться вчетверо быстрее, за 10 минут. Однако оказалось, что количество полос на новой трассе недостаточно, и реальное время движения растет из-за пробок до уровня (10 + N / 50) минут, где N – количество водителей, использующих новую трассу за 1 час. Схему движения изобразим на рис. 1.2.

Предположим, что в час пик от A до B едет 3000 человек. Направятся ли все они коротким путем? Несмотря на большой соблазн, нет. Если все поступят именно так, трасса встанет и время передвижения составит долгие 10 + 3000 / 50 = 70 минут, а это значит, что любой здравомыслящий водитель быстро поймет, что можно сэкономить полчаса, если по старинке использовать объездную. Напротив, если по новой трассе будет ехать только 500 автомобилистов, они доберутся всего за 10 + 500/50 = 20 минут, и у отправившихся вкруговую возникнут стимулы вернуться.

Экономисты чаще всего изучают равновесия – ситуации, в которых никто из участников процесса не хочет ничего менять. В данном случае это случится, если время передвижения по обоим путям будет одинаково, то есть будет выполнено условие 10 + N/50 = 40. Откуда находим, что по новой трассе поедет ровно половина водителей, а именно 1500 человек.

Оценим произошедшее. Могла ли в определенных обстоятельствах новая трасса улучшить жизнь общества? Да, могла. Мы приводили конкретный пример, когда 500 автомобилистов добирались от A до B быстрее, чем прежде, всего за 20 минут, а остальные ехали в объезд, затрачивая по-прежнему 40. И это еще не максимальная экономия времени, которую могло достичь общество, ведущее себя кооперативно. Однако если каждый ищет собственную выгоду, никакого улучшения мы не наблюдаем, и время передвижения по-прежнему составляет 40 минут для всех.

Рис. 1.2. Схема движения в парадоксе Найта-Даунса

Поможет ли расширение трассы в два раза? Пусть теперь короткий путь от A к B занимает 10 + N / 100 минут (рис. 1.3). Как и раньше, в равновесии не должно быть выгодно менять одну дорогу на другую, то есть 10 + N / 100 = 40. Решив уравнение, получим, что N = 3000. Это означает, что теперь все водители предпочтут ехать по новой трассе, но время движения по-прежнему составит неизменные 40 минут.

1.2.2. Парадокс Даунса-Томсона

Предыдущий параграф доказал нам, что строительство новых дорог или расширение старых может никак не повлиять на время передвижения по городу, который погряз в пробках. Еще удивительнее, что иногда может происходить ухудшение. И наша сегодняшняя история, известная под названием парадокса Даунса-Томсона, как раз на эту тему.

Рис. 1.3. Обновленная схема движения в парадоксе Найта-Даунса

Вернемся к примеру с многополосной объездной дорогой, по которой от пункта A к пункту B можно добраться за 40 минут, и короткой, но узкой трассой, время передвижения по которой зависит от интенсивности движения и составляет (10 + N / 50) минут. Пусть теперь между этими пунктами дополнительно запустили метро, которое ходит тем чаще, чем больше будет пассажиров, и позволяет добраться от A до B в среднем за (40 – M / 150) минут. Здесь M – число пассажиров. Схема представлена на рис. 1.4.

Заметим, что если все жители в час пик предпочтут пользоваться метро, то есть M = 3000, то ходящие часто поезда позволят добираться в среднем за 40 – 3000 / 150 = 20 минут, что вдвое быстрее, чем было в предыдущем примере без метро. С другой стороны, если все (ну или почти все) пересаживаются на личный автотранспорт, метро начинает ходить реже и время передвижения приближается к 40 минутам.

Рис. 1.4. Схема движения с метро в парадоксе Даунса-Томсона

Также можно заметить, что даже в худшей из ситуаций метро позволяет добраться быстрее, чем объездная дорога, поэтому если критерием качества мы считаем время передвижения, то выбор будет осуществляться между двумя вариантами – короткая трасса и метро. А значит, выполняется соотношение N + M = 3000.