А вот вопрос на засыпку — что показывал вольтметр в предыдущем эксперименте? Ведь измеряемая величина все время, с частотой 50 раз в секунду, меняется от отрицательного до точно такого же положительного значения, т. е. в среднем напряжение строго равно нулю — и тем не менее, вольтметр нам показывал совершенно определенное значение. Для ответа на этот вопрос отвлечемся от колебаний и поговорим о еще одной важнейшей величине, которая характеризует электрический ток, — о мощности.
Согласно определению, мощность есть энергия (работа), выделяемая в единицу времени. Единица мощности называется ватт (Вт). По определению, 1 ватт есть такая мощность, при которой за 1 секунду выделяется (или затрачивается — смотря с какой стороны поглядеть) 1 джоуль энергии. Для электрической цепи ее очень просто подсчитать по закону Джоуля — Ленца:
N(ватт) = U(вольт)·I(ампер)
Эту формулу несложно вывести из определений тока и напряжения (см. главу 1).
Действительно, размерность напряжения есть джоуль/кулон, а размерность тока — кулон/секунду. Если их перемножить, то кулоны сокращаются и получаются джоули в секунду — что, согласно приведенному ранее определению, и есть мощность.
Если подставить в формулу для электрической мощности выражения связи между током и напряжением по закону Ома, то можно вывести еще два часто употребляющихся представления закона Джоуля — Ленца:
N = I2R и N = U2/R
Обратите внимание на одно важное следствие из этих формул — мощность в цепи пропорциональна квадрату тока или напряжения. Это означает, что если повысить напряжение на некоем резисторе вдвое, то мощность, выделяющаяся на нем, возрастет вчетверо.
А вот от сопротивления мощность зависит линейно — если вы при том же источнике питания уменьшите сопротивление вдвое, то мощность в нагрузке также возрастет только вдвое. Это именно так, хотя факт, что согласно закону Ома ток в цепи увеличится также вдвое, мог бы нас привести к ошибочному выводу, будто в этом случае выделяющаяся мощность возрастет вчетверо. Но если вы внимательно проанализируете формулировку закона Джоуля — Ленца, то поймете, где здесь зарыта собака — ведь в произведении U·I увеличивается только ток, а напряжение остается тем же самым.
В электрических цепях энергия выступает чаще всего в роли тепловой энергии, поэтому электрическая мощность в подавляющем большинстве случаев физически означает просто количество тепла, которое выделяется в цепи (если в ней нет электромоторов или, скажем, источников света). Вот и ответ на вопрос, который мог бы задать пытливый читатель еще при чтении первой главы, — куда расходуется энергия источника питания, гоняющего по цепи ток? Ответ — на нагревание сопротивлений нагрузки, включенных в сеть. И даже если нагрузка представляет собой, скажем, источник света (лампочку или светодиод), то большая часть энергии все равно уходит в тепло — к. п. д. лампы накаливания (т. е. та часть энергии, которая превращается в свет), как известно, не превышает единиц процентов. У светодиодов эта величина значительно выше, но и там огромная часть энергии уходит в тепло. Кстати, из всего этого следует, например, что ваш компьютер последней модели, который потребляет сотни ватт энергии, также всю эту энергию переводит в тепло — за исключением исчезающе малой ее части, которая расходуется на свечение экрана и вращение жесткого диска (впрочем, энергия вращения тоже в конце концов переходит в тепло). Такова цена информации!
Если мощность, выделяемая на нагрузке, превысит некоторую допустимую величину, то нагрузка просто сгорит. Поэтому различные типы нагрузок характеризуют предельно допустимой мощностью, которую они могут рассеять без необратимых последствий. Подробнее об этом для разных видов нагрузок мы поговорим в дальнейшем, а сейчас зададимся вопросом — что означает мощность в цепях переменного тока?
Для того чтобы понять смысл этого вопроса, давайте внимательно рассмотрим график синусоидального напряжения на рис. 4.2. В каждый момент времени величина напряжения в нем разная — соответственно, будет разной и величина тока через резистор нагрузки, на который мы подадим такое напряжение. В моменты времени, обозначенные T/2 и Т (т. е. кратные половине периода нашего колебания), напряжение на нагрузке вообще будет равно нулю (ток через резистор не течет), а в промежутках между ними — меняется вплоть до некоей максимальной величины, равной амплитудному значению А. Точно так же будет меняться ток через нагрузку, а следовательно, и выделяемая мощность (которая от направления тока не зависит — физики скажут, что мощность есть величина скалярная, а не векторная). Но процесс выделения тепла крайне инерционен — даже такой маленький предмет, как волосок лампочки накаливания, за 1/100 секунды, которые проходят между пиками напряжения в промышленной сети частотой 50 Гц, не успевает заметно остыть. Поэтому нас чаще всего интересует именно средняя мощность за большой промежуток времени. Чему она будет равна?
Чтобы точно ответить на этот вопрос, нужно брать интегралы — средняя мощность за период есть интеграл по времени от квадрата функции напряжения. Здесь мы приведем только результат — величина средней мощности в цепи переменного тока определяется так называемым действующим значением напряжения (Ud), которое для синусоидального колебания связано с амплитудным его значением (Ua) следующей формулой: Ua = Ud·√2 (вывод этой формулы приведен в приложении 3). Точно такая же формула справедлива и для тока. Когда говорят «переменное напряжение 220 В», то всегда имеется в виду именно действующее значение. При этом амплитудное значение равно примерно 310 В, что легко подсчитать, если умножить 220 на корень из двух. Это значение нужно всегда иметь в виду при выборе компонентов для работы в сетях переменного тока — если взять диод, рассчитанный на 250 В, то он легко может выйти из строя при работе в обычной сети, в которой мгновенное значение превышает 300 В, хотя действующее значение и равно 220 В. А вот для компонентов, использующих эффект нагревания (лампочек, резисторов и т. п.), при расчете допустимой мощности нужно иметь в виду именно действующее значение.
Называть действующее значение «средним» неверно, правильно называть его среднеквадратическим (по способу вычисления — через квадрат функции от времени). Но существует и понятия среднего значения, причем не одно, а даже два. Просто среднее (строго по смыслу названия) — сумма всех мгновенных значений за период. И так как нижняя часть синусоиды (под осью абсцисс) строго симметрична относительно верхней, то можно даже не брать интегралов, чтобы сообразить, что среднее значение синусоидального напряжения, показанного на рис. 4.2, в точности равно нулю — положительная часть компенсирует отрицательную. Но такая величина малоинформативна, поэтому чаще используют средневыпрямленное (среднеамплитудное) значение, при котором знаки не учитываются (т. е. в интеграл подставляется абсолютная величина напряжения). Эта величина (Uс) связана с амплитудным значением (Ua) по формуле Uа = π·Uс/2 т. е. Ua равно примерно 1,57·Uc.