Выбрать главу

Аналогичная задача, только в меньших масштабах, стоит перед разработчиками источников бесперебойного питания (UPS) — питающий ток из сети нужно преобразовать в постоянный для зарядки низковольтного (12 или 24 вольта) резервного аккумулятора, а в случае пропадания сетевого питания это напряжение аккумулятора следует опять преобразовать к стандартному виду переменного сетевого напряжения (такое преобразование называется инверсией), причем желательно, чтобы форма его была максимально близка к синусоидальной. Приходится поломать голову, чтобы компьютер, питающийся через UPS, не заметил подмены!

Децибелы

Эрудированный читатель, несомненно, отметит, что я почти не употребляю в этой книге такой распространенной единицы измерения, как децибелы (дБ). Это вызвано некоторыми трудностями в их определении и понимании, потому по возможности мы постараемся их избегать. Но в некоторых случаях децибелы нам понадобятся, потому иметь представление о том, что это такое, необходимо.

Децибел (одна десятая бела, названного так по имени изобретателя телефона Александра Белла) есть единица, использующаяся для измерения отношений величин. Переведи отношение в децибелы и обратно можно по формуле:

K(дБ) = 20·lg(A1/A0),

где A1/A0 — есть отношение значений некоторых амплитуд (напряжений, токов, амплитуд колебаний воздуха или воды при распространении звука и т. п.).

Новичков очень смущает то, что в радиотехнике (например, при сравнении интенсивностей радиосигнала в разных точках) применяют несколько иные «мощностные» децибелы, для которых величина А должна иметь размерность энергии (или мощности), и формула будет иметь иной вид:

1 dB = 10·lg(A/A0)

В этой книге мы всегда будем иметь в виду «амплитудные» децибелы — например, коэффициент усиления звукового усилителя, равный 20 dB, будет означать, что напряжение на выходе будет в 10 раз больше напряжения на входе: Uвых/Uвх = 10db/20 (для «мощностных» децибел величина 20 означает изменение мощности сигнала в 100 раз).

Децибелы удобно использовать для характеристики изменения величин, меняющихся по степенному закону. Их широко используют при расчетах фильтров, анализе частотных и амплитудных характеристик операционных усилителей (ОУ).

График степенной функции, которая быстро возрастает или падает в обычных координатах, в широком диапазоне значений практически невозможно изобразить, а при использовании децибел он будет выглядеть прямой линией (это часто встречающиеся вам графики, где по осям отложены величины, возрастающие не линейно, а в геометрической прогрессии: 1, 10, 100, 1000…). В акустике звуковое давление практически всегда измеряют в «амплитудных» децибелах (относительно порога слышимости) — это связано с тем, что наше ухо реагирует именно на отношение громкостей, а не их абсолютное возрастание. Так, болевой порог звука, определяемый в 120 дБ, означает интенсивность звука в миллион раз выше порога слышимости.

Если отношение величин больше 1, то величина в децибелах будет положительной, если меньше — отрицательной. Для перевода «амплитудных» децибел в обычные относительные единицы и обратно необязательно всегда использовать указанную ранее формулу, достаточно просто запомнить несколько приблизительно выполняющихся соотношений:

□ З дБ соответствует увеличению/уменьшению на треть;

□ 6 дБ соответствует отношению в 2 раза;

□ 10 дБ соответствует отношению в 3 раза;

□ 20 дБ соответствует отношению в 10 раз.

Руководствуясь этими соотношениями, легко перевести любую величину, выраженную в децибелах: например, 73 дБ есть 20 + 20 + 20 + 10 + 3 дБ, что соответствует отношению в 10·10·10·3·1,33 = 4000 раз. Собственный коэффициент микросхемы звукового усилителя TDA2030 (см. главу 11) равен 30 000, т. е. 3·104, или 10 + 4·20 = 90 дБ, максимальный рекомендуемый коэффициент усиления усилителя на ее основе, согласно техническому описанию, равен 46 = 20 + 20 + 6 дБ, что соответствует усилению в 200 раз. Коэффициент ослабления синфазного сигнала (КООС), о котором речь пойдет в главе 12, также чаще всего измеряют в децибелах: так, его величина, равная -60 (= -3·20) дБ, означает, что синфазный сигнал ослабляется в 1000 раз. Крутизна характеристик простейших RC-фильтров низкой и высокой частоты из главы 5 равна, соответственно, — 6 и +6 дБ на октаву, что означает уменьшение/увеличение сигнала в 2 раза при изменении частоты также в 2 раза.

ГЛАВА 5

Электроника без полупроводников

Резисторы, конденсаторы и схемы на их основе

Глаза миледи метали такие молнии, что, хотя лорд Винтер был мужчина и стоял вооруженный перед беззащитной женщиной, он почувствовал, как в душе его зашевелился страх.

А.Дюма. Три мушкетера

Резисторы и конденсаторы — основа основ электроники. Эти элементы вместе с индуктивностями относятся к разряду так называемых линейных, потому что ток и напряжение в них зависят друг от друга по линейному закону и образуют группу пассивных элементов. Диоды, транзисторы и прочие нелинейные компоненты относят к активным элементам. Эти названия произошли от того, что эквивалентные схемы нелинейных элементов не могут обойтись без включения в них источников тока или напряжения (активных составляющих). Так как практически ни одна схема без резисторов и конденсаторов не обходится, то мы рассмотрим их свойства подробно.

Резисторы

Резистор — самый распространенный компонент электронных схем. Несмотря на его простоту (в самом деле — это всего-навсего кусок материала с определенным сопротивлением), не существует практически ни одной работоспособной схемы, в которой бы не присутствовали резисторы в том или ином виде. Даже если вы их и специально не ставили, они все равно есть. Скажем, в простейшем случае настольной лампы или карманного фонарика, где вся схема состоит из источника питания (сети или батарейки), выключателя и лампочки, резисторы неявно присутствуют — это и сама лампочка, которая светится, нагреваясь за счет своего высокого сопротивления, и сопротивление проводов, и внутреннее сопротивление источника питания. Все эти элементы могут быть представлены на схеме, как резисторы. Причем последние два элемента из перечисленных только мешают, забирая на себя часть полезной мощности, но избавиться от них невозможно, они присутствуют всегда и везде, поэтому их нужно учитывать и стараться свести их влияние к минимуму.

Если вы вернетесь к рис. 1.4 в главе 1, то при внимательном его рассмотрении поймете, что кроме указанных на схеме резисторов R1 и R2 в деле участвуют еще как минимум четыре резистора: сопротивление проводов, сопротивление амперметра, сопротивление вольтметра и внутреннее сопротивление источника питания. Для простоты влияние паразитных резисторов обычно игнорируют, считая, что они оказывают исчезающе малое влияние на работу схемы, однако это не всегда так.

Ко всем этим тонкостям мы еще будем возвращаться не раз, а пока рассмотрим резисторы, как таковые — т. е. фабрично выпускаемые компоненты электронных схем под таким названием. Они встречаются разных типов, размеров и конструкций. Наиболее часто употребляемые типы — металлопленочные (металлодиэлектрические) резисторы. Наиболее распространены импортные металлопленочные резисторы (MFR), аналоги отечественных МЛТ, которые тоже довольно часто встречаются на рынках до сих пор. Отечественные МЛТ старых выпусков имеют обычно красный или розовый цвет (хотя иногда встречаются и другие цвета, например зеленый), а номинальное значение сопротивления написано прямо на них, в то время как современные резисторы маркируются международным цветным кодом. Есть и другие типы резисторов общего назначения. По функциональным свойствам все они практически идентичны.